Calibrated Configurations for Frenkel–Kontorova Type Models in Almost Periodic Environments

Calibrated Configurations for Frenkel–Kontorova Type Models in Almost Periodic Environments The Frenkel–Kontorova model describes how an infinite chain of atoms minimizes the total energy of the system when the energy takes into account the interaction of nearest neighbors as well as the interaction with an exterior environment. An almost periodic environment leads to consider a family of interaction energies which is stationary with respect to a minimal topological dynamical system. We focus, in this context, on the existence of calibrated configurations (a notion stronger than the standard minimizing condition). In any dimension and for any continuous superlinear interaction energies, we exhibit a set, called projected Mather set, formed of environments that admit calibrated configurations. In the one-dimensional setting, we then give sufficient conditions on the family of interaction energies that guarantee the existence of calibrated configurations for every environment. The main mathematical tools for this study are developed in the frameworks of discrete weak KAM theory, Aubry–Mather theory and spaces of Delone sets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Annales Henri Poincaré Springer Journals

Calibrated Configurations for Frenkel–Kontorova Type Models in Almost Periodic Environments

Loading next page...
 
/lp/springer_journal/calibrated-configurations-for-frenkel-kontorova-type-models-in-almost-fAKUGF61aq
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing
Subject
Physics; Theoretical, Mathematical and Computational Physics; Dynamical Systems and Ergodic Theory; Quantum Physics; Mathematical Methods in Physics; Classical and Quantum Gravitation, Relativity Theory; Elementary Particles, Quantum Field Theory
ISSN
1424-0637
eISSN
1424-0661
D.O.I.
10.1007/s00023-017-0589-7
Publisher site
See Article on Publisher Site

Abstract

The Frenkel–Kontorova model describes how an infinite chain of atoms minimizes the total energy of the system when the energy takes into account the interaction of nearest neighbors as well as the interaction with an exterior environment. An almost periodic environment leads to consider a family of interaction energies which is stationary with respect to a minimal topological dynamical system. We focus, in this context, on the existence of calibrated configurations (a notion stronger than the standard minimizing condition). In any dimension and for any continuous superlinear interaction energies, we exhibit a set, called projected Mather set, formed of environments that admit calibrated configurations. In the one-dimensional setting, we then give sufficient conditions on the family of interaction energies that guarantee the existence of calibrated configurations for every environment. The main mathematical tools for this study are developed in the frameworks of discrete weak KAM theory, Aubry–Mather theory and spaces of Delone sets.

Journal

Annales Henri PoincaréSpringer Journals

Published: May 19, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off