Caleosins: Ca2+-binding proteins associated with lipid bodies

Caleosins: Ca2+-binding proteins associated with lipid bodies We have previously identified a rice gene encoding a 27 kDa protein with a single Ca2+-binding EF-hand and a putative membrane anchor. We report here similar genes termed caleosins, CLO, in other plants and fungi; they comprise a multigene family of at least five members in Arabidopsis (AtClo1–5). Northern hybridization demonstrated that AtClo2–4 mRNAs levels were low in various tissues, while AtClo1 mRNA levels were high in developing embryos and mature seeds. Analysis of transgenic Arabidopsis plants expressing the GUS reporter under control of the AtClo1 promoter showed strong levels of expression in developing embryos and also in root tip cells. Antibodies raised against AtCLO1 were used to detect caleosin in cellular fractions of Arabidopsis and rapeseed. This indicated that caleosins are a novel class of lipid body proteins, which may also be associated with an ER subdomain. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals
Loading next page...
 
/lp/springer_journal/caleosins-ca2-binding-proteins-associated-with-lipid-bodies-Ow6DgADNE5
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1026564411918
Publisher site
See Article on Publisher Site

Abstract

We have previously identified a rice gene encoding a 27 kDa protein with a single Ca2+-binding EF-hand and a putative membrane anchor. We report here similar genes termed caleosins, CLO, in other plants and fungi; they comprise a multigene family of at least five members in Arabidopsis (AtClo1–5). Northern hybridization demonstrated that AtClo2–4 mRNAs levels were low in various tissues, while AtClo1 mRNA levels were high in developing embryos and mature seeds. Analysis of transgenic Arabidopsis plants expressing the GUS reporter under control of the AtClo1 promoter showed strong levels of expression in developing embryos and also in root tip cells. Antibodies raised against AtCLO1 were used to detect caleosin in cellular fractions of Arabidopsis and rapeseed. This indicated that caleosins are a novel class of lipid body proteins, which may also be associated with an ER subdomain.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off