Calculation of stiffness parameters and vibration analysis of a cold rolling mill stand

Calculation of stiffness parameters and vibration analysis of a cold rolling mill stand The elastic deformation of rolling mill elements during the rolling process is important. By knowing the displacement of rolls, the optimum gap between the work rolls can be calculated. In present research, a vibration model with two degrees of freedom is proposed for a cold sheet rolling mill and the stiffness parameters of different mill elements are calculated. A numerical simulation and a finite element analysis are also carried out for the related vibrations. Afterwards, the maximum displacement of rolls is calculated using the vibration transient response of the work roll and backup roll. It is found that the system vibration reaches the critical damped level, and the rolls return to their resting positions quicker, and the effects of oscillations on the sheet being rolled decreases. As a result, precision of reduction in sheet thickness increases. Moreover, due to decrease in the sheet speed, the oscillation amplitude of rolls declines and movements of rolls turn into movements without oscillating. Finally, to verify the effectiveness of the proposed method, the experimental data are compared with calculated stiffness parameters and the rolling force. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Calculation of stiffness parameters and vibration analysis of a cold rolling mill stand

Loading next page...
 
/lp/springer_journal/calculation-of-stiffness-parameters-and-vibration-analysis-of-a-cold-FafBjFjImP
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0026-6
Publisher site
See Article on Publisher Site

Abstract

The elastic deformation of rolling mill elements during the rolling process is important. By knowing the displacement of rolls, the optimum gap between the work rolls can be calculated. In present research, a vibration model with two degrees of freedom is proposed for a cold sheet rolling mill and the stiffness parameters of different mill elements are calculated. A numerical simulation and a finite element analysis are also carried out for the related vibrations. Afterwards, the maximum displacement of rolls is calculated using the vibration transient response of the work roll and backup roll. It is found that the system vibration reaches the critical damped level, and the rolls return to their resting positions quicker, and the effects of oscillations on the sheet being rolled decreases. As a result, precision of reduction in sheet thickness increases. Moreover, due to decrease in the sheet speed, the oscillation amplitude of rolls declines and movements of rolls turn into movements without oscillating. Finally, to verify the effectiveness of the proposed method, the experimental data are compared with calculated stiffness parameters and the rolling force.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Feb 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off