Calculation of Biodiesel Fuel Characteristics Based on the Fatty Acid Composition of the Lipids of Some Biotechnologically Important Microorganisms

Calculation of Biodiesel Fuel Characteristics Based on the Fatty Acid Composition of the Lipids... The interdependences between the structure of fatty acid and biofuel characteristics obtained from these fatty acids were briefly reviewed. The fatty acid compositions of the lipids of yeasts and phototrophic microorganisms were analyzed. The main parameters of the biodiesel (iodine value, cetane number, and kinematic viscosity) that can be made from the lipids of these microorganisms were calculated based on the data and compared to the current standards. The lipids of the yeast Rhodosporidium toruloides VKPM Y-3349 were shown to be the most suitable for biofuel production due to the composition and content of fatty acid. The possibilities of a decrease in the prime cost of microbial lipids (along with plant oils) that would make them competitive raw material for biofuel production were considered. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Biochemistry and Microbiology Springer Journals

Calculation of Biodiesel Fuel Characteristics Based on the Fatty Acid Composition of the Lipids of Some Biotechnologically Important Microorganisms

Loading next page...
 
/lp/springer_journal/calculation-of-biodiesel-fuel-characteristics-based-on-the-fatty-acid-MvJbg9jXVi
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Inc.
Subject
Life Sciences; Biochemistry, general; Microbiology; Medical Microbiology
ISSN
0003-6838
eISSN
1608-3024
D.O.I.
10.1134/S0003683817080063
Publisher site
See Article on Publisher Site

Abstract

The interdependences between the structure of fatty acid and biofuel characteristics obtained from these fatty acids were briefly reviewed. The fatty acid compositions of the lipids of yeasts and phototrophic microorganisms were analyzed. The main parameters of the biodiesel (iodine value, cetane number, and kinematic viscosity) that can be made from the lipids of these microorganisms were calculated based on the data and compared to the current standards. The lipids of the yeast Rhodosporidium toruloides VKPM Y-3349 were shown to be the most suitable for biofuel production due to the composition and content of fatty acid. The possibilities of a decrease in the prime cost of microbial lipids (along with plant oils) that would make them competitive raw material for biofuel production were considered.

Journal

Applied Biochemistry and MicrobiologySpringer Journals

Published: Feb 22, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off