Calcium Oxalate Deposits in Leaves of Corchorus olitorius as Related to Accumulation of Toxic Metals1

Calcium Oxalate Deposits in Leaves of Corchorus olitorius as Related to Accumulation of Toxic... This study was to report and describe the formation of Ca oxalate crystals and to explore whether there is any correlation between their abundant formation and the ability of plant to uptake and accumulate high levels of toxic metals. Soil-grown Corchorus olitorius L. (Tiliaceae) seedlings were further grown in water culture in the presence of Cd, Pb, Cu, or Al (0–10 μg/ml) for 20 days. Light and electron microscopic examinations revealed a large number of intracellular prismatic-shaped Ca oxalate crystals in both leaf and callus cells. Crystals were formed in the vacuole, a single large crystal being formed per cell. The crystal-containing cells differed in size and shape from crystal-free cells, they were rich in organelles, membranes, and vesicles and have dense cytoplasm, enlarged nucleus and modified starch-lacking plastids with few grana. These cells look highly active. Corchorus plants treated with Cd, Pb, Cu, and Al accumulated these metals to the levels several times higher than untreated plants. The contents of Pb, Cd, Al, and Cu in leaf tissues of plants grown in the presence of 5 μg/ml of these metals were 10, 20, 25, and 40 times higher, respectively, than those in plants grown on media devoid of them. X-ray microanalysis of Ca oxalate crystals in leaves from plants exposed to 5 μg/ml Cd, Pb, Al, or Cu indicated the incorporation only of Al into these crystals. Results of this paper suggest a possible contribution for Ca oxalate-crystal formation in sequestering and tolerance of at least some toxic metals. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Calcium Oxalate Deposits in Leaves of Corchorus olitorius as Related to Accumulation of Toxic Metals1

Loading next page...
 
/lp/springer_journal/calcium-oxalate-deposits-in-leaves-of-corchorus-olitorius-as-related-taswVhYbdJ
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/B:RUPP.0000019226.03536.21
Publisher site
See Article on Publisher Site

Abstract

This study was to report and describe the formation of Ca oxalate crystals and to explore whether there is any correlation between their abundant formation and the ability of plant to uptake and accumulate high levels of toxic metals. Soil-grown Corchorus olitorius L. (Tiliaceae) seedlings were further grown in water culture in the presence of Cd, Pb, Cu, or Al (0–10 μg/ml) for 20 days. Light and electron microscopic examinations revealed a large number of intracellular prismatic-shaped Ca oxalate crystals in both leaf and callus cells. Crystals were formed in the vacuole, a single large crystal being formed per cell. The crystal-containing cells differed in size and shape from crystal-free cells, they were rich in organelles, membranes, and vesicles and have dense cytoplasm, enlarged nucleus and modified starch-lacking plastids with few grana. These cells look highly active. Corchorus plants treated with Cd, Pb, Cu, and Al accumulated these metals to the levels several times higher than untreated plants. The contents of Pb, Cd, Al, and Cu in leaf tissues of plants grown in the presence of 5 μg/ml of these metals were 10, 20, 25, and 40 times higher, respectively, than those in plants grown on media devoid of them. X-ray microanalysis of Ca oxalate crystals in leaves from plants exposed to 5 μg/ml Cd, Pb, Al, or Cu indicated the incorporation only of Al into these crystals. Results of this paper suggest a possible contribution for Ca oxalate-crystal formation in sequestering and tolerance of at least some toxic metals.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 18, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off