Calcium-Mediated Responses of Maize to Oxygen Deprivation

Calcium-Mediated Responses of Maize to Oxygen Deprivation Oxygen limitation dramatically alters the patterns of gene expression as well as development of plants. Complete removal of O2 leads to an immediate cessation of protein synthesis followed by a selective synthesis of about twenty anaerobic proteins in maize (Zea mays L.) seedlings. Among these are enzymes involved in glycolysis and related processes. However, inducible genes that have different functions were also found; they may function in other, perhaps more long-term, processes of adaptations to flooding, such as aerenchyma formation and root-tip death. Our recent research has addressed two questions: how these gene expression changes are initiated and how do these responses culminate in the overall adaptation of plants to flooding-stress. The results obtained indicate that an early rise in cytosolic Ca2+ as well as a quick establishment of ionic homeostasis may be essential for the induction of adaptive changes at the cellular as well as organismal level. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Calcium-Mediated Responses of Maize to Oxygen Deprivation

Loading next page...
 
/lp/springer_journal/calcium-mediated-responses-of-maize-to-oxygen-deprivation-NZgH4lSh4T
Publisher
Springer Journals
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/B:RUPP.0000003273.44823.cd
Publisher site
See Article on Publisher Site

Abstract

Oxygen limitation dramatically alters the patterns of gene expression as well as development of plants. Complete removal of O2 leads to an immediate cessation of protein synthesis followed by a selective synthesis of about twenty anaerobic proteins in maize (Zea mays L.) seedlings. Among these are enzymes involved in glycolysis and related processes. However, inducible genes that have different functions were also found; they may function in other, perhaps more long-term, processes of adaptations to flooding, such as aerenchyma formation and root-tip death. Our recent research has addressed two questions: how these gene expression changes are initiated and how do these responses culminate in the overall adaptation of plants to flooding-stress. The results obtained indicate that an early rise in cytosolic Ca2+ as well as a quick establishment of ionic homeostasis may be essential for the induction of adaptive changes at the cellular as well as organismal level.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 17, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off