Calcium influx signals normal flagellar RNA induction following acid shock of Chlamydomonas reinhardtii

Calcium influx signals normal flagellar RNA induction following acid shock of Chlamydomonas... Acid shock of Chlamydomonas results in flagellar excision and induction of flagellar protein RNAs. The magnitude of flagellar RNA accumulations after flagellar excision by mechanical shear depends on the extracel]ular Ca2+ concentration. In this report, we demonstrate that the magnitude and duration of flagellar RNA accumulations are signaled by an acid shock-induced Ca2+ influx. RNA accumulations were greater in cells acid shocked in 500 µM CaCl2 than in 200 µM CaCl2, although the accumulation durations were similar. RNA accumulations of lower magnitude and shorter duration were observed in cells in Ca2+-containing buffer treated with CdCl2. RNA accumulations were of still lower magnitude and shorter duration in cells shocked in buffer without added CaCl2 than in cells shocked in 200 or 500 µM CaCl2 or in the presence of CdCl2. RNA accumulations similar to those in cells shocked in buffer without added CaCl2 were measured in cells following acid shock in buffer containing 200 µM CaCl2 and supplemented with neomycin, ruthenium red, or LaCl3. Acid shock of the adf-1 mutant resulted in RNA accumulations of shorter duration and lower magnitude than those measured in adf-1 cells stimulated by mechanical shear. These results are consistent with an hypothesis that acid shock generates two genetically and pharmacologically distinct signals governing flagellar RNA induction; the first signal is independent of a Ca2+ influx and flagellar excision and results in low magnitude accumulations of short duration, and the second is a consequence of a Ca2+ influx and results in accumulations of high magnitude and long duration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Calcium influx signals normal flagellar RNA induction following acid shock of Chlamydomonas reinhardtii

Loading next page...
 
/lp/springer_journal/calcium-influx-signals-normal-flagellar-rna-induction-following-acid-yzXX1IziE4
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005727806897
Publisher site
See Article on Publisher Site

Abstract

Acid shock of Chlamydomonas results in flagellar excision and induction of flagellar protein RNAs. The magnitude of flagellar RNA accumulations after flagellar excision by mechanical shear depends on the extracel]ular Ca2+ concentration. In this report, we demonstrate that the magnitude and duration of flagellar RNA accumulations are signaled by an acid shock-induced Ca2+ influx. RNA accumulations were greater in cells acid shocked in 500 µM CaCl2 than in 200 µM CaCl2, although the accumulation durations were similar. RNA accumulations of lower magnitude and shorter duration were observed in cells in Ca2+-containing buffer treated with CdCl2. RNA accumulations were of still lower magnitude and shorter duration in cells shocked in buffer without added CaCl2 than in cells shocked in 200 or 500 µM CaCl2 or in the presence of CdCl2. RNA accumulations similar to those in cells shocked in buffer without added CaCl2 were measured in cells following acid shock in buffer containing 200 µM CaCl2 and supplemented with neomycin, ruthenium red, or LaCl3. Acid shock of the adf-1 mutant resulted in RNA accumulations of shorter duration and lower magnitude than those measured in adf-1 cells stimulated by mechanical shear. These results are consistent with an hypothesis that acid shock generates two genetically and pharmacologically distinct signals governing flagellar RNA induction; the first signal is independent of a Ca2+ influx and flagellar excision and results in low magnitude accumulations of short duration, and the second is a consequence of a Ca2+ influx and results in accumulations of high magnitude and long duration.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off