Calcium-Induced Mitochondrial Permeability Transitions: Parameters of Ca2+ Ion Interactions with Mitochondria and Effects of Oxidative Agents

Calcium-Induced Mitochondrial Permeability Transitions: Parameters of Ca2+ Ion Interactions with... We evaluated the parameters of Ca2+-induced mitochondrial permeability transition (MPT) pore formations, Ca2+ binding constants, stoichiometry, energy of activation, and the effect of oxidative agents, tert-butyl hydroperoxide (tBHP), and hypochlorous acid (HOCl), on Ca2+ -mediated process in rat liver mitochondria. From the Hill plot of the dependence of MPT rate on Ca2+ concentration, we determined the order of interaction of Ca2+ ions with the mitochondrial sites, n = 3, and the apparent Kd = 60 ± 12 µM. We also found the apparent Michaelis–Menten constant, Km, for Ca2+ interactions with mitochondria to be equal to 75 ± 20 µM, whereas that in the presence of 300 µM tBHP was 120 ± 20 µM. Using the Arrhenius plots of the temperature dependences of apparent mitochondrial swelling rate at various Ca2+ concentrations, we calculated the activation energy of the MPT process. ΔEa was 130 ± 20 kJ/mol at temperatures below the break point of the Arrhenius plot (30–34 °C) and 50 ± 9 kJ/mol at higher temperatures. Ca2+ ions induced rapid mitochondrial NADH depletion and membrane depolarization. Prevention of the pore formation by cyclosporin A inhibited Ca2+-dependent mitochondrial depolarization and Mg2+ ions attenuated the potential dissipation. tBHP (10–150 µM) dose-dependently enhanced the rate of MPT opening, whereas the effect of HOCl on MPT depended on the ratio of HOCl/Ca2+. The apparent Km of tBHP interaction with mitochondria in the swelling reaction was found to be Km = 11 ± 3 µM. The present study provides evidence that three calcium ions interact with mitochondrial site with high affinity during MPT. Ca2+-induced MPT pore formations due to mitochondrial membrane protein denaturation resulted in membrane potential dissipation. Oxidants with different mechanisms, tBHP and HOCl, reduced mitochondrial membrane potential and oxidized mitochondrial NADH in EDTA-free medium and had an effect on Ca2+-induced MPT onset. The Journal of Membrane Biology Springer Journals

Calcium-Induced Mitochondrial Permeability Transitions: Parameters of Ca2+ Ion Interactions with Mitochondria and Effects of Oxidative Agents

Loading next page...
Springer US
Copyright © 2017 by Springer Science+Business Media New York
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial