Calcium-Based Interactions of Symbiotic Partners in Legumes: Role of Peribacteroid Membrane

Calcium-Based Interactions of Symbiotic Partners in Legumes: Role of Peribacteroid Membrane Based on experimental evidence, a concept is formulated that mutualistic relationships between pro- and eukaryotic cells during nitrogen-fixing legume–rhizobia symbiosis rely both on selective transfer of metabolites and ion transport, Ca2+ in particular, across the peribacteroid membrane (PBM). PBM in the nitrogen-fixing cells of yellow lupine (Lupinus luteus L.) and broad bean (Vicia faba L.) is endowed with a calcium-translocating ATPase that pumps Ca2+ into the symbiosome. This pumping ensures, on the one hand, calcium homeostasis in the cytosol of infected plant cells and, on the other hand, it optimizes Ca2+ level in symbiosomes, first of all in the bacteroids, because Ca2+ is one of the main factors controlling their nitrogenase activity. The balance between the symbiotic partners and the maintenance of optimal Ca2+ level in the bacteroids also depends on passive Ca2+ efflux from symbiosomes to the plant cell cytosol via calcium channels. The Ca2+-transporting mechanisms residing at PBM are characterized. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Calcium-Based Interactions of Symbiotic Partners in Legumes: Role of Peribacteroid Membrane

Loading next page...
 
/lp/springer_journal/calcium-based-interactions-of-symbiotic-partners-in-legumes-role-of-Ms88pXgVwj
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2003 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1024789227513
Publisher site
See Article on Publisher Site

Abstract

Based on experimental evidence, a concept is formulated that mutualistic relationships between pro- and eukaryotic cells during nitrogen-fixing legume–rhizobia symbiosis rely both on selective transfer of metabolites and ion transport, Ca2+ in particular, across the peribacteroid membrane (PBM). PBM in the nitrogen-fixing cells of yellow lupine (Lupinus luteus L.) and broad bean (Vicia faba L.) is endowed with a calcium-translocating ATPase that pumps Ca2+ into the symbiosome. This pumping ensures, on the one hand, calcium homeostasis in the cytosol of infected plant cells and, on the other hand, it optimizes Ca2+ level in symbiosomes, first of all in the bacteroids, because Ca2+ is one of the main factors controlling their nitrogenase activity. The balance between the symbiotic partners and the maintenance of optimal Ca2+ level in the bacteroids also depends on passive Ca2+ efflux from symbiosomes to the plant cell cytosol via calcium channels. The Ca2+-transporting mechanisms residing at PBM are characterized.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 11, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off