Calcined eggshell as a cost effective material for removal of dyes from aqueous solution

Calcined eggshell as a cost effective material for removal of dyes from aqueous solution The removal of Rhodamine B, Eriochrome black T and Murexide dyes from aqueous solutions using calcined eggshell powder were investigated. In this study, calcined eggshell powder was applied for its potential use as an adsorbent for the removal of Rhodamine B, Eriochrome black T and Murexide dyes from their aqueous solutions. The calcined eggshell powder obtained was characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). The various parameters such as initial concentration, pH, adsorbent dose and contact time were studied. Various isotherms including Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models were applied for the equilibrium adsorption data. The kinetic study of Rhodamine B, Eriochrome black T and Murexide dyes on calcined eggshell powder follows pseudo-second order kinetics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Water Science Springer Journals

Calcined eggshell as a cost effective material for removal of dyes from aqueous solution

Loading next page...
 
/lp/springer_journal/calcined-eggshell-as-a-cost-effective-material-for-removal-of-dyes-oXRO0JKjMH
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Earth Sciences; Hydrogeology; Water Industry/Water Technologies; Industrial and Production Engineering; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Nanotechnology; Private International Law, International & Foreign Law, Comparative Law
ISSN
2190-5487
eISSN
2190-5495
D.O.I.
10.1007/s13201-017-0558-9
Publisher site
See Article on Publisher Site

Abstract

The removal of Rhodamine B, Eriochrome black T and Murexide dyes from aqueous solutions using calcined eggshell powder were investigated. In this study, calcined eggshell powder was applied for its potential use as an adsorbent for the removal of Rhodamine B, Eriochrome black T and Murexide dyes from their aqueous solutions. The calcined eggshell powder obtained was characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). The various parameters such as initial concentration, pH, adsorbent dose and contact time were studied. Various isotherms including Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models were applied for the equilibrium adsorption data. The kinetic study of Rhodamine B, Eriochrome black T and Murexide dyes on calcined eggshell powder follows pseudo-second order kinetics.

Journal

Applied Water ScienceSpringer Journals

Published: Apr 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off