Caffeine-Induced Ca2+ Transients and Exocytosis in Paramecium Cells. A Correlated Ca2+ Imaging and Quenched-Flow/Freeze-Fracture Analysis

Caffeine-Induced Ca2+ Transients and Exocytosis in Paramecium Cells. A Correlated Ca2+ Imaging... Caffeine causes a [Ca2+] i increase in the cortex of Paramecium cells, followed by spillover with considerable attenuation, into central cell regions. From [Ca2+]rest i ∼50 to 80 nm, [Ca2+]act i rises within ≤3 sec to 500 (trichocyst-free strain tl) or 220 nm (nondischarge strain nd9–28°C) in the cortex. Rapid confocal analysis of wildtype cells (7S) showed only a 2-fold cortical increase within 2 sec, accompanied by trichocyst exocytosis and a central Ca2+ spread during the subsequent ≥2 sec. Chelation of Ca2+ o considerably attenuated [Ca2+] i increase. Therefore, caffeine may primarily mobilize cortical Ca2+ pools, superimposed by Ca2+ influx and spillover (particularly in tl cells with empty trichocyst docking sites). In nd cells, caffeine caused trichocyst contents to decondense internally (Ca2+-dependent stretching, normally occurring only after membrane fusion). With 7S cells this usually occurred only to a small extent, but with increasing frequency as [Ca2+] i signals were reduced by [Ca2+] o chelation. In this case, quenched-flow and ultrathin section or freeze-fracture analysis revealed dispersal of membrane components (without fusion) subsequent to internal contents decondensation, opposite to normal membrane fusion when a full [Ca2+] i signal was generated by caffeine stimulation (with Ca2+ i and Ca2+ o available). We conclude the following. (i) Caffeine can mobilize Ca2+ from cortical stores independent of the presence of Ca2+ o . (ii) To yield adequate signals for normal exocytosis, Ca2+ release and Ca2+ influx both have to occur during caffeine stimulation. (iii) Insufficient [Ca2+] i increase entails caffeine-mediated access of Ca2+ to the secretory contents, thus causing their decondensation before membrane fusion can occur. (iv) Trichocyst decondensation in turn gives a signal for an unusual dissociation of docking/fusion components at the cell membrane. These observations imply different threshold [Ca2+] i -values for membrane fusion and contents discharge. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Caffeine-Induced Ca2+ Transients and Exocytosis in Paramecium Cells. A Correlated Ca2+ Imaging and Quenched-Flow/Freeze-Fracture Analysis

Loading next page...
 
/lp/springer_journal/caffeine-induced-ca2-transients-and-exocytosis-in-paramecium-cells-a-IKJObHy4pI
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900315
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial