Cadmium induced oxidative stress and biochemical responses in cyanobacterium Nostoc muscorum

Cadmium induced oxidative stress and biochemical responses in cyanobacterium Nostoc muscorum The present study deals with the growth, photosynthesis, oxidative stress and heavy metal accumulation ability of Nostoc muscorum exposed to different levels (2, 4, 8, 16, 20 μM) of cadmium (Cd) concentrations. Growth and photosynthetic pigments i.e., chlorophyll a, carotenoids and phycocyanin were significantly affected by cadmium exposure and inhibition was found to be dose dependent. 14C-fixation appeared to be more sensitive to Cd than whole cell oxygen evolution. Significant accumulation of Cd in the cells of N. muscorum was noticed after 1 and 2 h of exposure and the accumulation rate was dose and time dependent. Furthermore, the levels of superoxide radicals and hydrogen peroxide (H2O2) were found significantly increased by cadmium exposure which in turn accelerated the formation of malondialdehyde (MDA) content, and protein and DNA damage. The selected dose of Cd (20 μM) showed the induction of new polypeptide of ~23.24 kD and the loss of ~37.84 kD and ~69.63 kD whereas the remaining bands were inhibited as compared to control. Significant DNA fragmentation which is a hallmark of programmed cell death (PCD) was also observed in the cells treated with 20 μM of Cd for 48 h. The decrease in proline and total phenol content at 8 and 16 μM suggest that the cells of N. muscorum were not able to mitigate the oxidative stress induced by cadmium exposure. Similarly, the decreased activities of antioxidant enzymes i.e., superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) also indicates the failure of the antioxidant defense system of N. muscorum to survive at higher concentration (8 and 16 μM) of cadmium. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Cadmium induced oxidative stress and biochemical responses in cyanobacterium Nostoc muscorum

Loading next page...
 
/lp/springer_journal/cadmium-induced-oxidative-stress-and-biochemical-responses-in-80bcCCE5If
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S102144371701006X
Publisher site
See Article on Publisher Site

Abstract

The present study deals with the growth, photosynthesis, oxidative stress and heavy metal accumulation ability of Nostoc muscorum exposed to different levels (2, 4, 8, 16, 20 μM) of cadmium (Cd) concentrations. Growth and photosynthetic pigments i.e., chlorophyll a, carotenoids and phycocyanin were significantly affected by cadmium exposure and inhibition was found to be dose dependent. 14C-fixation appeared to be more sensitive to Cd than whole cell oxygen evolution. Significant accumulation of Cd in the cells of N. muscorum was noticed after 1 and 2 h of exposure and the accumulation rate was dose and time dependent. Furthermore, the levels of superoxide radicals and hydrogen peroxide (H2O2) were found significantly increased by cadmium exposure which in turn accelerated the formation of malondialdehyde (MDA) content, and protein and DNA damage. The selected dose of Cd (20 μM) showed the induction of new polypeptide of ~23.24 kD and the loss of ~37.84 kD and ~69.63 kD whereas the remaining bands were inhibited as compared to control. Significant DNA fragmentation which is a hallmark of programmed cell death (PCD) was also observed in the cells treated with 20 μM of Cd for 48 h. The decrease in proline and total phenol content at 8 and 16 μM suggest that the cells of N. muscorum were not able to mitigate the oxidative stress induced by cadmium exposure. Similarly, the decreased activities of antioxidant enzymes i.e., superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) also indicates the failure of the antioxidant defense system of N. muscorum to survive at higher concentration (8 and 16 μM) of cadmium.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Feb 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off