Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and ascorbate-glutathione cycle metabolism

Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and... Ascorbate (AsA)-glutathione (GSH) cycle metabolism is an essential mechanism for the resistance of plants under stress conditions. In a greenhouse pot experiment, the influence of cadmium (Cd) (25, 50, and 100 mg/kg soil) on plant dry weight and leaf area, photosynthetic parameters (net photosynthetic rate (PN) and chlorophyll (Chl) content) and oxidative stress, and the possible protective role of AsA-GSH cycle metabolism was studied in two mung bean (Vigna radiata (L.) Wilczek.) cvs. Pusa 9531 (Cd-tolerant) and PS 16 (Cd-susceptible) at 30 days after sowing. The contents of thiobarbituric acid-reactive substances (TBARS), H2O2, and the leakage of ions were the highest at 100 mg Cd/kg soil, and the effect was more pronounced in cv. PS 16 than in cv. Pusa 9531. This was concomitant with the strongest decreases in PN, plant dry weight, and leaf area. The changes in the AsA-GSH redox state and an increase in AsA-GSH-regenerating enzymes, such as glutathione reductase, monodehydroascorbate reductase, dehydroascorbate reductase, and other antioxidant enzymes, such as superoxide dismutase and ascorbate peroxidase, strongly supported over-utilization of AsA-GSH in Cd-treated plants. However, the oxidative stress caused by Cd toxicity was partially overcome by AsA-GSH-based detoxification mechanism in the two genotypes studied because an increases in lipid peroxidation (TBARS, ion leakage) and H2O2 content were accompanied by a corresponding decrease in reduced AsA and GSH pools. Thus, changes in AsA-GSH pools and the coordination between AsA-GSH-regenerating enzymes and other enzymatic antioxidants of the leaves suggest their relevance to the defense against Cd stress. Russian Journal of Plant Physiology Springer Journals

Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and ascorbate-glutathione cycle metabolism

Loading next page...
SP MAIK Nauka/Interperiodica
Copyright © 2011 by Pleiades Publishing, Ltd.
Life Sciences; Plant Sciences ; Plant Physiology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial