Cache-conscious frequent pattern mining on modern and emerging processors

Cache-conscious frequent pattern mining on modern and emerging processors Algorithms are typically designed to exploit the current state of the art in processor technology. However, as processor technology evolves, said algorithms are often unable to derive the maximum achievable performance on these modern architectures. In this paper, we examine the performance of frequent pattern mining algorithms on a modern processor. A detailed performance study reveals that even the best frequent pattern mining implementations, with highly efficient memory managers, still grossly under-utilize a modern processor. The primary performance bottlenecks are poor data locality and low instruction level parallelism (ILP) . We propose a cache-conscious prefix tree to address this problem. The resulting tree improves spatial locality and also enhances the benefits from hardware cache line prefetching. Furthermore, the design of this data structure allows the use of path tiling , a novel tiling strategy, to improve temporal locality. The result is an overall speedup of up to 3.2 when compared with state of the art implementations. We then show how these algorithms can be improved further by realizing a non-naive thread-based decomposition that targets simultaneously multi-threaded processors (SMT) . A key aspect of this decomposition is to ensure cache re-use between threads that are co-scheduled at a fine granularity. This optimization affords an additional speedup of 50%, resulting in an overall speedup of up to 4.8. The proposed optimizations also provide performance improvements on SMPs, and will most likely be beneficial on emerging processors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Cache-conscious frequent pattern mining on modern and emerging processors

Loading next page...
 
/lp/springer_journal/cache-conscious-frequent-pattern-mining-on-modern-and-emerging-RV7op88tfl
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-006-0025-y
Publisher site
See Article on Publisher Site

Abstract

Algorithms are typically designed to exploit the current state of the art in processor technology. However, as processor technology evolves, said algorithms are often unable to derive the maximum achievable performance on these modern architectures. In this paper, we examine the performance of frequent pattern mining algorithms on a modern processor. A detailed performance study reveals that even the best frequent pattern mining implementations, with highly efficient memory managers, still grossly under-utilize a modern processor. The primary performance bottlenecks are poor data locality and low instruction level parallelism (ILP) . We propose a cache-conscious prefix tree to address this problem. The resulting tree improves spatial locality and also enhances the benefits from hardware cache line prefetching. Furthermore, the design of this data structure allows the use of path tiling , a novel tiling strategy, to improve temporal locality. The result is an overall speedup of up to 3.2 when compared with state of the art implementations. We then show how these algorithms can be improved further by realizing a non-naive thread-based decomposition that targets simultaneously multi-threaded processors (SMT) . A key aspect of this decomposition is to ensure cache re-use between threads that are co-scheduled at a fine granularity. This optimization affords an additional speedup of 50%, resulting in an overall speedup of up to 4.8. The proposed optimizations also provide performance improvements on SMPs, and will most likely be beneficial on emerging processors.

Journal

The VLDB JournalSpringer Journals

Published: Jan 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off