Cable-suspended load lifting by a quadrotor UAV: hybrid model, trajectory generation, and control

Cable-suspended load lifting by a quadrotor UAV: hybrid model, trajectory generation, and control In the last years, autonomous aerial vehicles have become promising mobile robotic platforms capable of manipulating external objects. In particular, quadrotors, rotorcrafts with four propellers, have been used for aerial transportation of cable-suspended loads. A critical step before transporting a payload is the lift maneuver. However, the analysis and planning of this maneuver have received a little attention in the literature so far. In this work, we decompose the cable-suspended load lifting into three simpler discrete states or modes: Setup, Pull, and Raise. Each of these states represents the dynamics of the quadrotor-load system at particular regimes during the maneuver. Furthermore, we define a hybrid system based on these states and show that it is a differentially-flat hybrid system. Exploiting this property, we generate a trajectory by using a series of waypoints associated with each mode. We design a nonlinear hybrid controller to track this trajectory and therefore execute the lift maneuver. We verify the proposed approach by carrying out experiments on an actual quadrotor with a cable-suspended load. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Autonomous Robots Springer Journals

Cable-suspended load lifting by a quadrotor UAV: hybrid model, trajectory generation, and control

Loading next page...
 
/lp/springer_journal/cable-suspended-load-lifting-by-a-quadrotor-uav-hybrid-model-TyzSbiBfnp
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Robotics and Automation; Artificial Intelligence (incl. Robotics); Computer Imaging, Vision, Pattern Recognition and Graphics; Control, Robotics, Mechatronics
ISSN
0929-5593
eISSN
1573-7527
D.O.I.
10.1007/s10514-017-9632-2
Publisher site
See Article on Publisher Site

Abstract

In the last years, autonomous aerial vehicles have become promising mobile robotic platforms capable of manipulating external objects. In particular, quadrotors, rotorcrafts with four propellers, have been used for aerial transportation of cable-suspended loads. A critical step before transporting a payload is the lift maneuver. However, the analysis and planning of this maneuver have received a little attention in the literature so far. In this work, we decompose the cable-suspended load lifting into three simpler discrete states or modes: Setup, Pull, and Raise. Each of these states represents the dynamics of the quadrotor-load system at particular regimes during the maneuver. Furthermore, we define a hybrid system based on these states and show that it is a differentially-flat hybrid system. Exploiting this property, we generate a trajectory by using a series of waypoints associated with each mode. We design a nonlinear hybrid controller to track this trajectory and therefore execute the lift maneuver. We verify the proposed approach by carrying out experiments on an actual quadrotor with a cable-suspended load.

Journal

Autonomous RobotsSpringer Journals

Published: Apr 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off