Ca2+ Signalling in Brain Synaptosomes Activated by Dinucleotides

Ca2+ Signalling in Brain Synaptosomes Activated by Dinucleotides Diadenosine polyphosphates are a family of dinucleotides formed by two adenosines joined by a variable number of phosphates. Diadenosine tetraphosphate, Ap4A, diadenosine pentaphosphate Ap5A, and diadenosine hexaphosphate, Ap6A, are stored in synaptic vesicles and are released upon nerve terminal depolarization. At the extracellular level, diadenosine polyphosphates can stimulate presynaptic dinucleotide receptors. Responses to diadenosine polyphosphates have been described in isolated synaptic terminals (synaptosomes) from several brain areas in different animal species, including man. Dinucleotide receptors are ligand-operated ion channels that allow the influx of cations into the terminals. These cations reach a threshold for N- and P/Q-type voltage-dependent calcium channels, which become activated. The activation of the dinucleotide receptor together with the activation of these calcium channels triggers the release of neurotransmitters. The ability of Ap5A to promote glutamate, GABA or acetylcholine release has been recently described by the present authors in rat midbrain synaptosomes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Ca2+ Signalling in Brain Synaptosomes Activated by Dinucleotides

Loading next page...
 
/lp/springer_journal/ca2-signalling-in-brain-synaptosomes-activated-by-dinucleotides-52kXqgqNgo
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-003-2024-x
Publisher site
See Article on Publisher Site

Abstract

Diadenosine polyphosphates are a family of dinucleotides formed by two adenosines joined by a variable number of phosphates. Diadenosine tetraphosphate, Ap4A, diadenosine pentaphosphate Ap5A, and diadenosine hexaphosphate, Ap6A, are stored in synaptic vesicles and are released upon nerve terminal depolarization. At the extracellular level, diadenosine polyphosphates can stimulate presynaptic dinucleotide receptors. Responses to diadenosine polyphosphates have been described in isolated synaptic terminals (synaptosomes) from several brain areas in different animal species, including man. Dinucleotide receptors are ligand-operated ion channels that allow the influx of cations into the terminals. These cations reach a threshold for N- and P/Q-type voltage-dependent calcium channels, which become activated. The activation of the dinucleotide receptor together with the activation of these calcium channels triggers the release of neurotransmitters. The ability of Ap5A to promote glutamate, GABA or acetylcholine release has been recently described by the present authors in rat midbrain synaptosomes.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 18, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off