C-Terminal Determinants of Kir4.2 Channel Expression

C-Terminal Determinants of Kir4.2 Channel Expression Inward rectifier potassium (Kir) channels serve important functional and modulatory roles in a wide variety of cells. While the activity of several members of this channel family are tightly regulated by intracellular messengers such as adenosine triphosphate, G proteins, protein kinases and pH, other members are tonically active and activity is controlled only by the expression level of the protein. In a number of Kir channels, sequence motifs have been identified which determine how effectively the channel is trafficked to and from the plasma membrane. In this report, we identify a number of trafficking determinants in the Kir4.2 channel. Using mutational analysis, we found that truncation of the C terminus of the protein increased current density in Xenopus oocytes, although multiple mutations of the C terminus had no effect on current density. Instead, mutation of a unique region of the channel significantly increased current density. Selective mutation of a putative tyrosine phosphorylation site within this region mimicked the increase in current, suggesting that tyrosine phosphorylation of the protein increases channel retrieval from the membrane (or prevents trafficking to the membrane). Mutation of a previously identified trafficking determinant, K110N, also caused an increase in current density, and combining these mutations caused a multiplicative increase in current, suggesting that these two mutations increase current by independent mechanisms. These data demonstrate novel determinants of Kir4.2 channel expression. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

C-Terminal Determinants of Kir4.2 Channel Expression

Loading next page...
 
/lp/springer_journal/c-terminal-determinants-of-kir4-2-channel-expression-Apj09003b0
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-006-0058-6
Publisher site
See Article on Publisher Site

Abstract

Inward rectifier potassium (Kir) channels serve important functional and modulatory roles in a wide variety of cells. While the activity of several members of this channel family are tightly regulated by intracellular messengers such as adenosine triphosphate, G proteins, protein kinases and pH, other members are tonically active and activity is controlled only by the expression level of the protein. In a number of Kir channels, sequence motifs have been identified which determine how effectively the channel is trafficked to and from the plasma membrane. In this report, we identify a number of trafficking determinants in the Kir4.2 channel. Using mutational analysis, we found that truncation of the C terminus of the protein increased current density in Xenopus oocytes, although multiple mutations of the C terminus had no effect on current density. Instead, mutation of a unique region of the channel significantly increased current density. Selective mutation of a putative tyrosine phosphorylation site within this region mimicked the increase in current, suggesting that tyrosine phosphorylation of the protein increases channel retrieval from the membrane (or prevents trafficking to the membrane). Mutation of a previously identified trafficking determinant, K110N, also caused an increase in current density, and combining these mutations caused a multiplicative increase in current, suggesting that these two mutations increase current by independent mechanisms. These data demonstrate novel determinants of Kir4.2 channel expression.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Apr 28, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off