C→N coordination bonds in (CCC)→N + ←(L) complexes

C→N coordination bonds in (CCC)→N + ←(L) complexes Quantum chemical calculations were performed on a series of novel divalent NI compounds, CCC → N+ ← CO (1), CCC → N+ ← N2 (2), CCC → N+ ← PPh3 (3), CCC → N+ ← C(NH2)2 (4), CCC → N+ ← NHCMe (5) CCC → N+ ← N-methyl-4-pyridylidene (6) and CCC → N+ ← Cyclopropenylidene (7), where CCC is a carbocyclic carbene (cyclohexa-2,5-diene-4-(diaminomethynyl)-1-ylidene). Complete optimization of 3D structures indicates that the chosen structures are the global minima on their respective potential energy surfaces (tautomeric alternatives are much less stable). The CCC → N+ coordination bond length is in the range of 1.353–1.399 Å, supporting the C → N coordination bond character. This is also supplemented by very low CCC → N bond rotational barriers (> 8 kcal/mol). The CCC → N ← L angles are in the range of 118°–131°, suggesting that there is no heteroallene-type character at the central nitrogen atom. Electron localization function, lone pair occupancy calculations and partial charge analysis indicate the presence of excess electron density at the N+ centre. The nucleophilicity of the designed compounds was further measured by calculating the proton affinity and complexation energies with various Lewis acids like BH3, AlCl3 and AuCl at the N+ centre. All these studies suggest the presence of divalent NI character in the designed compounds 1–7. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Theoretical Chemistry Accounts Springer Journals

C→N coordination bonds in (CCC)→N + ←(L) complexes

Loading next page...
 
/lp/springer_journal/c-n-coordination-bonds-in-ccc-n-l-complexes-S4XaM0yC4G
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Chemistry; Theoretical and Computational Chemistry; Inorganic Chemistry; Organic Chemistry; Physical Chemistry; Atomic/Molecular Structure and Spectra
ISSN
1432-881X
eISSN
1432-2234
D.O.I.
10.1007/s00214-018-2208-1
Publisher site
See Article on Publisher Site

Abstract

Quantum chemical calculations were performed on a series of novel divalent NI compounds, CCC → N+ ← CO (1), CCC → N+ ← N2 (2), CCC → N+ ← PPh3 (3), CCC → N+ ← C(NH2)2 (4), CCC → N+ ← NHCMe (5) CCC → N+ ← N-methyl-4-pyridylidene (6) and CCC → N+ ← Cyclopropenylidene (7), where CCC is a carbocyclic carbene (cyclohexa-2,5-diene-4-(diaminomethynyl)-1-ylidene). Complete optimization of 3D structures indicates that the chosen structures are the global minima on their respective potential energy surfaces (tautomeric alternatives are much less stable). The CCC → N+ coordination bond length is in the range of 1.353–1.399 Å, supporting the C → N coordination bond character. This is also supplemented by very low CCC → N bond rotational barriers (> 8 kcal/mol). The CCC → N ← L angles are in the range of 118°–131°, suggesting that there is no heteroallene-type character at the central nitrogen atom. Electron localization function, lone pair occupancy calculations and partial charge analysis indicate the presence of excess electron density at the N+ centre. The nucleophilicity of the designed compounds was further measured by calculating the proton affinity and complexation energies with various Lewis acids like BH3, AlCl3 and AuCl at the N+ centre. All these studies suggest the presence of divalent NI character in the designed compounds 1–7.

Journal

Theoretical Chemistry AccountsSpringer Journals

Published: Feb 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off