Burstification Queue Management in Optical Burst Switching Networks

Burstification Queue Management in Optical Burst Switching Networks Among the various issues lying in optical burst switching (OBS) networks, burstification, i.e., assembling multiple IP packets into bursts, is an important one. Between the two important aspects related to burst assembly, the burst assembly algorithm aspect has been extensively studied in the literature. However, as far as we know, there is no research about the burstification queue management (BQM) aspect, which refers to how many burstification queues (BQ) we should set at each OBS edge node and how to manage these BQs. Suppose there are G destinations (egress edge nodes) and the OBS network provides S different quality of service (QoS) classes. Traditionally, it is simply regarded that each ingress edge node needs G· S queues to sort incoming packets, one for each possible destination and QoS class. For simplicity, we call this policy the static dedicate BQM (SDB) policy. The SDB policy, though simple, lacks scalability since we have to add S BQs at each OBS edge node if an extra OBS edge node is added to the OBS network. To solve this problem, we propose in this paper two BQM policies: quasi-static BQM (QSB) policy and dynamic BQM (DB) policy. For the QSB policy, we derive the packet loss probability due to lacking BQs based on a Markov chain, from which we can work out the employed number of BQs for a given packet loss probability. Based on these results, the scalability of the QSB policy is also studied. With the DB policy, we not only can dynamically assign BQs for incoming packets, but also can dynamically allocate buffer capacity for each BQ by using a least-mean-square (LMS)-based linear prediction filter. The performance of the DB policy is investigated by analysis and extensive simulations. We also compared the performance of the QSB policy and the DB policy. Results from analysis and simulation demonstrate that the DB policy is the best. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Burstification Queue Management in Optical Burst Switching Networks

Loading next page...
Kluwer Academic Publishers
Copyright © 2006 by Springer Science + Business Media, Inc.
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial