Bursal transcriptome of chickens protected by DNA vaccination versus those challenged with infectious bursal disease virus

Bursal transcriptome of chickens protected by DNA vaccination versus those challenged with... Infectious bursal disease virus (IBDV) infection destroys the bursa of Fabricius, causing immunosuppression and rendering chickens susceptible to secondary bacterial or viral infections. IBDV large-segment-protein-expressing DNA has been shown to confer complete protection of chickens from infectious bursal disease (IBD). The purpose of the present study was to compare DNA-vaccinated chickens and unvaccinated chickens upon IBDV challenge by transcriptomic analysis of bursa regarding innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport. One-day-old specific-pathogen-free chickens were vaccinated intramuscularly three times at weekly intervals with IBDV large-segment-protein-expressing DNA. Chickens were challenged orally with 8.2 × 10 2 times the egg infective dose (EID) 50 of IBDV strain variant E (VE) one week after the last vaccination. Bursae collected at 0.5, 1, 3, 5, 7, and 10 days post-challenge (dpc) were subjected to real-time RT-PCR quantification of bursal transcripts related to innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport. The expression levels of granzyme K and CD8 in DNA-vaccinated chickens were significantly (p < 0.05) higher than those in unvaccinated chickens upon IBDV challenge at 0.5 or 1 dpc. The expression levels of other genes involved in innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport were not upregulated or downregulated in DNA-vaccinated chickens during IBDV challenge. Bursal transcripts related to innate immunity and inflammation, including TLR3, MDA5, IFN-α, IFN-β, IRF-1, IRF-10, IL-1β, IL-6, IL-8, iNOS, granzyme A, granzyme K and IL-10, were upregulated or significantly (p < 0.05) upregulated at 3 dpc and later in unvaccinated chickens challenged with IBDV. The expression levels of genes related to immune cell regulation, apoptosis and glucose transport, including CD4, CD8, IL-2, IFN-γ, IL-12(p40), IL-18, GM-CSF, GATA-3, p53, glucose transporter-2 and glucose transporter-3, were upregulated or significantly (p < 0.05) upregulated at 3 dpc and later in unvaccinated chickens challenged with IBDV. Taken together, the results indicate that the bursal transcriptome involved in innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport, except for granzyme K and CD8, was not differentially expressed in DNA-vaccinated chickens protected from IBDV challenge. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Bursal transcriptome of chickens protected by DNA vaccination versus those challenged with infectious bursal disease virus

Loading next page...
 
/lp/springer_journal/bursal-transcriptome-of-chickens-protected-by-dna-vaccination-versus-aEON00Xz5f
Publisher
Springer Vienna
Copyright
Copyright © 2015 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-014-2232-y
Publisher site
See Article on Publisher Site

Abstract

Infectious bursal disease virus (IBDV) infection destroys the bursa of Fabricius, causing immunosuppression and rendering chickens susceptible to secondary bacterial or viral infections. IBDV large-segment-protein-expressing DNA has been shown to confer complete protection of chickens from infectious bursal disease (IBD). The purpose of the present study was to compare DNA-vaccinated chickens and unvaccinated chickens upon IBDV challenge by transcriptomic analysis of bursa regarding innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport. One-day-old specific-pathogen-free chickens were vaccinated intramuscularly three times at weekly intervals with IBDV large-segment-protein-expressing DNA. Chickens were challenged orally with 8.2 × 10 2 times the egg infective dose (EID) 50 of IBDV strain variant E (VE) one week after the last vaccination. Bursae collected at 0.5, 1, 3, 5, 7, and 10 days post-challenge (dpc) were subjected to real-time RT-PCR quantification of bursal transcripts related to innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport. The expression levels of granzyme K and CD8 in DNA-vaccinated chickens were significantly (p < 0.05) higher than those in unvaccinated chickens upon IBDV challenge at 0.5 or 1 dpc. The expression levels of other genes involved in innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport were not upregulated or downregulated in DNA-vaccinated chickens during IBDV challenge. Bursal transcripts related to innate immunity and inflammation, including TLR3, MDA5, IFN-α, IFN-β, IRF-1, IRF-10, IL-1β, IL-6, IL-8, iNOS, granzyme A, granzyme K and IL-10, were upregulated or significantly (p < 0.05) upregulated at 3 dpc and later in unvaccinated chickens challenged with IBDV. The expression levels of genes related to immune cell regulation, apoptosis and glucose transport, including CD4, CD8, IL-2, IFN-γ, IL-12(p40), IL-18, GM-CSF, GATA-3, p53, glucose transporter-2 and glucose transporter-3, were upregulated or significantly (p < 0.05) upregulated at 3 dpc and later in unvaccinated chickens challenged with IBDV. Taken together, the results indicate that the bursal transcriptome involved in innate immunity, inflammation, immune cell regulation, apoptosis and glucose transport, except for granzyme K and CD8, was not differentially expressed in DNA-vaccinated chickens protected from IBDV challenge.

Journal

Archives of VirologySpringer Journals

Published: Jan 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off