Bridging the spectral gap using image synthesis: a study on matching visible to passive infrared face images

Bridging the spectral gap using image synthesis: a study on matching visible to passive infrared... We propose an approach that bridges the gap between the visible and IR band of the electromagnetic spectrum, namely the mid-wave infrared or MWIR (3–5  $$\upmu \hbox {m}$$ μ m ) and the long-wave infrared or LWIR (8–14  $$\upmu \hbox {m}$$ μ m ) bands. Specifically, we investigate the benefits and limitations of using synthesized visible face images from thermal and vice versa, in cross-spectral face recognition systems when utilizing canonical correlation analysis and manifold learning dimensionality reduction. There are four primary contributions of this work. First, we assemble a database of frontal face images composed of paired VIS-MWIR and VIS-LWIR face images (using different methods for pre-processing and registration). Second, we formulate a image synthesis framework and post-synthesis restoration methodology, to improve face recognition accuracy. Third, we explore cohort-specific matching (per gender) instead of blind-based matching (when all images in the gallery are matched against all in the probe set). Finally, by conducting an extensive experimental study, we establish that the proposed scheme increases system performance in terms of rank-1 identification rate. Experimental results suggest that matching visible images against images acquired with passive infrared spectrum, and vice-versa, are feasible with promising results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Machine Vision and Applications Springer Journals

Bridging the spectral gap using image synthesis: a study on matching visible to passive infrared face images

Loading next page...
 
/lp/springer_journal/bridging-the-spectral-gap-using-image-synthesis-a-study-on-matching-f6z67txSj4
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Computer Science; Pattern Recognition; Image Processing and Computer Vision; Communications Engineering, Networks
ISSN
0932-8092
eISSN
1432-1769
D.O.I.
10.1007/s00138-017-0855-1
Publisher site
See Article on Publisher Site

Abstract

We propose an approach that bridges the gap between the visible and IR band of the electromagnetic spectrum, namely the mid-wave infrared or MWIR (3–5  $$\upmu \hbox {m}$$ μ m ) and the long-wave infrared or LWIR (8–14  $$\upmu \hbox {m}$$ μ m ) bands. Specifically, we investigate the benefits and limitations of using synthesized visible face images from thermal and vice versa, in cross-spectral face recognition systems when utilizing canonical correlation analysis and manifold learning dimensionality reduction. There are four primary contributions of this work. First, we assemble a database of frontal face images composed of paired VIS-MWIR and VIS-LWIR face images (using different methods for pre-processing and registration). Second, we formulate a image synthesis framework and post-synthesis restoration methodology, to improve face recognition accuracy. Third, we explore cohort-specific matching (per gender) instead of blind-based matching (when all images in the gallery are matched against all in the probe set). Finally, by conducting an extensive experimental study, we establish that the proposed scheme increases system performance in terms of rank-1 identification rate. Experimental results suggest that matching visible images against images acquired with passive infrared spectrum, and vice-versa, are feasible with promising results.

Journal

Machine Vision and ApplicationsSpringer Journals

Published: Jun 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off