Bridging Primary Programming and Mathematics: Some Findings of Design Research in England

Bridging Primary Programming and Mathematics: Some Findings of Design Research in England In this paper we present the background, aims and methodology of the ScratchMaths (SM) project, which has designed curriculum materials and professional development (PD) to support mathematical learning through programming for pupils aged between 9 and 11 years. The project was framed by the particular context of computing in the English education system alongside the long history of research and development in programming and mathematics. In this paper, we present a “framework for action” (diSessa and Cobb, Journal of the Learning Sciences, 13, 77–103, 2004) following design research that looked to develop an evidence-based curriculum intervention around carefully chosen mathematical and computational concepts. As a first step in teasing out factors for successful implementation and addressing any gap between our design intentions and teacher delivery, we focus on two key foundational concepts within the SM curriculum: the concept of algorithm and of 360° total turn. We found that our intervention as a whole enabled teachers with different backgrounds and levels of confidence to tailor the delivery of the SM in ways that can make these challenging concepts more accessible for both themselves and their pupils. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Digital Experiences in Mathematics Education Springer Journals

Bridging Primary Programming and Mathematics: Some Findings of Design Research in England

Loading next page...
 
/lp/springer_journal/bridging-primary-programming-and-mathematics-some-findings-of-design-dDLut0XhnC
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by The Author(s)
Subject
Education; Mathematics Education; Educational Technology; Learning and Instruction
ISSN
2199-3246
eISSN
2199-3254
D.O.I.
10.1007/s40751-017-0028-x
Publisher site
See Article on Publisher Site

Abstract

In this paper we present the background, aims and methodology of the ScratchMaths (SM) project, which has designed curriculum materials and professional development (PD) to support mathematical learning through programming for pupils aged between 9 and 11 years. The project was framed by the particular context of computing in the English education system alongside the long history of research and development in programming and mathematics. In this paper, we present a “framework for action” (diSessa and Cobb, Journal of the Learning Sciences, 13, 77–103, 2004) following design research that looked to develop an evidence-based curriculum intervention around carefully chosen mathematical and computational concepts. As a first step in teasing out factors for successful implementation and addressing any gap between our design intentions and teacher delivery, we focus on two key foundational concepts within the SM curriculum: the concept of algorithm and of 360° total turn. We found that our intervention as a whole enabled teachers with different backgrounds and levels of confidence to tailor the delivery of the SM in ways that can make these challenging concepts more accessible for both themselves and their pupils.

Journal

Digital Experiences in Mathematics EducationSpringer Journals

Published: Jan 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off