Breeding of the Russian sable: Stages of industrial domestication and genetic variability

Breeding of the Russian sable: Stages of industrial domestication and genetic variability Creating farms for sable breeding was associated with the commercial destruction of natural populations and, consequently, the overall decline in the species number. The gene pool of the first farm-bred sable population in Russia, established in the vicinity of Moscow (“Pushkinskiy” fur farm), was formed by crossing of animals removed from nine natural populations. In the first eight years of farm operation, approximately one thousand animals were used for sable breeding; some of these animals were able to adapt to the farm management and, subsequently, to the selection for a number of quantitative traits in the period of industrial domestication. It took about ten years for breeders to work out the breeding and selection technologies, which became successfully employed in the established affiliated sable breeding farms. The main achievement in sable breeding over the 85-year historical period of breeding in Russia is the creation of two unique breeds, black sable (1969) and Saltykovskaya 1 (2007). In general, industrial domestication in fur farming and the subsequent breeding works made the fur of many species (mink, fox, Arctic fox) obtained from natural populations uncompetitive, which undoubtedly reduced the hunting interest in the animals living in the wild. Consequently, hunting for fur-bearing animals of most species decreased and has only local importance. Owing to the specific features of sable biology, the fur of farm-bred animals cannot yet completely replace the furs obtained by hunting; however, the farm-bred sable population is constantly growing. This review presents the results of the analysis of the level of genetic variability in natural and farm populations at nuclear and mitochondrial loci. The comparative analysis makes it possible to estimate the loss of genetic diversity upon the species adaptation to the new conditions of existence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Breeding of the Russian sable: Stages of industrial domestication and genetic variability

Loading next page...
1
 
/lp/springer_journal/breeding-of-the-russian-sable-stages-of-industrial-domestication-and-xLq9BWi0jd
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795416090076
Publisher site
See Article on Publisher Site

Abstract

Creating farms for sable breeding was associated with the commercial destruction of natural populations and, consequently, the overall decline in the species number. The gene pool of the first farm-bred sable population in Russia, established in the vicinity of Moscow (“Pushkinskiy” fur farm), was formed by crossing of animals removed from nine natural populations. In the first eight years of farm operation, approximately one thousand animals were used for sable breeding; some of these animals were able to adapt to the farm management and, subsequently, to the selection for a number of quantitative traits in the period of industrial domestication. It took about ten years for breeders to work out the breeding and selection technologies, which became successfully employed in the established affiliated sable breeding farms. The main achievement in sable breeding over the 85-year historical period of breeding in Russia is the creation of two unique breeds, black sable (1969) and Saltykovskaya 1 (2007). In general, industrial domestication in fur farming and the subsequent breeding works made the fur of many species (mink, fox, Arctic fox) obtained from natural populations uncompetitive, which undoubtedly reduced the hunting interest in the animals living in the wild. Consequently, hunting for fur-bearing animals of most species decreased and has only local importance. Owing to the specific features of sable biology, the fur of farm-bred animals cannot yet completely replace the furs obtained by hunting; however, the farm-bred sable population is constantly growing. This review presents the results of the analysis of the level of genetic variability in natural and farm populations at nuclear and mitochondrial loci. The comparative analysis makes it possible to estimate the loss of genetic diversity upon the species adaptation to the new conditions of existence.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Sep 28, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off