Branching Random Walk in a Catalytic Medium. I. Basic Equations

Branching Random Walk in a Catalytic Medium. I. Basic Equations We consider a continuous-time branching random walk on the integer lattice ℤd (d ≥ 1 ) with a finite number of branching sources, or catalysts. The random walk is assumed to be spatially homogeneous and irreducible. The branching mechanism at each catalyst, being independent of the random walk, is governed by a Markov branching process. The quantities of interest are the local numbers of particles (at each site) and the total population size. In the present paper, we derive and analyze the Kolmogorov type backward equations for the corresponding Laplace generating functions and also for the successive integer moments and the process extinction probability. In particular, existence and uniqueness theorems are proved and the problem of explosion is studied in some detail. We then rewrite these equations in the form of integral equations of renewal type, which may serve as a convenient tool for the study of the process long-time behavior. The paper also provides a technical foundation to some results published before without detailed proofs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

Branching Random Walk in a Catalytic Medium. I. Basic Equations

Loading next page...
 
/lp/springer_journal/branching-random-walk-in-a-catalytic-medium-i-basic-equations-o5fAVZSN8a
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
ISSN
1385-1292
eISSN
1572-9281
D.O.I.
10.1023/A:1009818620550
Publisher site
See Article on Publisher Site

Abstract

We consider a continuous-time branching random walk on the integer lattice ℤd (d ≥ 1 ) with a finite number of branching sources, or catalysts. The random walk is assumed to be spatially homogeneous and irreducible. The branching mechanism at each catalyst, being independent of the random walk, is governed by a Markov branching process. The quantities of interest are the local numbers of particles (at each site) and the total population size. In the present paper, we derive and analyze the Kolmogorov type backward equations for the corresponding Laplace generating functions and also for the successive integer moments and the process extinction probability. In particular, existence and uniqueness theorems are proved and the problem of explosion is studied in some detail. We then rewrite these equations in the form of integral equations of renewal type, which may serve as a convenient tool for the study of the process long-time behavior. The paper also provides a technical foundation to some results published before without detailed proofs.

Journal

PositivitySpringer Journals

Published: Oct 19, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off