Brain-derived neurotrophic factor promotes human granulosa-like tumor cell steroidogenesis and proliferation by activating the FSH receptor-mediated signaling pathway

Brain-derived neurotrophic factor promotes human granulosa-like tumor cell steroidogenesis and... Brain-derived neurotrophic factor (BDNF) and FSH receptor (FSHR) are expressed in ovarian granulosa cells, and play important roles in regulating follicle growth and oocyte maturation. Studies have linked the BDNF-associated signaling pathway to FSHR mRNA expression in the regulation of follicle development, but the mechanisms remain unknown. In the current study, we found that BDNF stimulated the secretion of estradiol and progesterone, and increased the proliferation of KGN cells (human granulosa-like tumor cell line). BDNF treatment also increased phosphorylated and ubiquitinated FSHR, and activated cAMP/PKA/CREB signaling pathway. Moreover, inhibition of BDNF expression by siRNA markedly reduced the estradiol secretion and down-regulated FSHR, aromatase and phosphorylated CREB; meanwhile, FSH treatment partly alleviated the effects of BDNF siRNA on KGN cells. These findings suggested that BDNF modulates graunlosa cell functions and the action probably mediated by FSHR-coupled signaling pathway, to affect aromatase-mediated steroidogenesis. These results provide an alternative target to optimize ovarian granulosa cell function. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Brain-derived neurotrophic factor promotes human granulosa-like tumor cell steroidogenesis and proliferation by activating the FSH receptor-mediated signaling pathway

Loading next page...
 
/lp/springer_journal/brain-derived-neurotrophic-factor-promotes-human-granulosa-like-tumor-mZ3hoVDhl6
Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-00203-x
Publisher site
See Article on Publisher Site

Abstract

Brain-derived neurotrophic factor (BDNF) and FSH receptor (FSHR) are expressed in ovarian granulosa cells, and play important roles in regulating follicle growth and oocyte maturation. Studies have linked the BDNF-associated signaling pathway to FSHR mRNA expression in the regulation of follicle development, but the mechanisms remain unknown. In the current study, we found that BDNF stimulated the secretion of estradiol and progesterone, and increased the proliferation of KGN cells (human granulosa-like tumor cell line). BDNF treatment also increased phosphorylated and ubiquitinated FSHR, and activated cAMP/PKA/CREB signaling pathway. Moreover, inhibition of BDNF expression by siRNA markedly reduced the estradiol secretion and down-regulated FSHR, aromatase and phosphorylated CREB; meanwhile, FSH treatment partly alleviated the effects of BDNF siRNA on KGN cells. These findings suggested that BDNF modulates graunlosa cell functions and the action probably mediated by FSHR-coupled signaling pathway, to affect aromatase-mediated steroidogenesis. These results provide an alternative target to optimize ovarian granulosa cell function.

Journal

Scientific ReportsSpringer Journals

Published: Mar 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off