Bounds for the Range of a Bivariate Polynomial over a Triangle

Bounds for the Range of a Bivariate Polynomial over a Triangle The problem of finding an enclosure for the range of a bivariate polynomial p over the unit triangle is considered. The polynomial p is expanded into Bernstein polynomials. If p has only real coefficients the coefficients of this expansion, the so-called Bernstein coefficients, provide lower and upper bounds for the range. In the case that p has complex coefficients the convex hull of the Bernstein coefficients encloses the range. The enclosure is improved by subdividing the unit triangle into squares and triangles and computing enclosures for the range of p over these regions. It is shown that the sequence of enclosures obtained in this way converges to the convex hull of the range in the Hausdorff distance. Furthermore, it is described how the Bernstein coefficients on these regions can be computed economically. Reliable Computing Springer Journals

Bounds for the Range of a Bivariate Polynomial over a Triangle

Loading next page...
Kluwer Academic Publishers
Copyright © 1998 by Kluwer Academic Publishers
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial