Boundary correlation-based intracoding for SHVC algorithm and its efficient VLSI architecture

Boundary correlation-based intracoding for SHVC algorithm and its efficient VLSI architecture Scalable high-efficiency video coding (SHVC) can provide variable video quality according to terminal devices. However, a computational complexity of SHVC is increased by introducing new techniques based on high-efficiency video coding (HEVC). In this paper, a hardware-oriented low complexity algorithm is proposed for the reference software of SHVC (SHM11.0). In our proposed algorithm, an optimal coding unit depth is determined by analyzing the boundary correlation in a coding tree unit before encoding starts. Simulation results show that the proposed algorithm can achieve over 62% computation complexity reduction comparing to the original SHM11.0. Compared with other related work, over 11% time saving has been achieved without PSNR loss. Moreover, to confirm the efficacy of the proposed algorithm, a hardware architecture is designed targeting on the CU depth decision algorithm. Synthesis results show that the hardware cost is about 1.8K gate and achieve a scalable working clock frequency in the case of FPGA (CycloneV) implementation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Real-Time Image Processing Springer Journals

Boundary correlation-based intracoding for SHVC algorithm and its efficient VLSI architecture

Loading next page...
 
/lp/springer_journal/boundary-correlation-based-intracoding-for-shvc-algorithm-and-its-iC5xLk6aq9
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Computer Science; Image Processing and Computer Vision; Multimedia Information Systems; Computer Graphics; Pattern Recognition; Signal,Image and Speech Processing
ISSN
1861-8200
eISSN
1861-8219
D.O.I.
10.1007/s11554-018-0786-8
Publisher site
See Article on Publisher Site

Abstract

Scalable high-efficiency video coding (SHVC) can provide variable video quality according to terminal devices. However, a computational complexity of SHVC is increased by introducing new techniques based on high-efficiency video coding (HEVC). In this paper, a hardware-oriented low complexity algorithm is proposed for the reference software of SHVC (SHM11.0). In our proposed algorithm, an optimal coding unit depth is determined by analyzing the boundary correlation in a coding tree unit before encoding starts. Simulation results show that the proposed algorithm can achieve over 62% computation complexity reduction comparing to the original SHM11.0. Compared with other related work, over 11% time saving has been achieved without PSNR loss. Moreover, to confirm the efficacy of the proposed algorithm, a hardware architecture is designed targeting on the CU depth decision algorithm. Synthesis results show that the hardware cost is about 1.8K gate and achieve a scalable working clock frequency in the case of FPGA (CycloneV) implementation.

Journal

Journal of Real-Time Image ProcessingSpringer Journals

Published: May 19, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off