Bose-Mesner algebra on finite G/H coset graphs and its application on continuous time quantum walks

Bose-Mesner algebra on finite G/H coset graphs and its application on continuous time quantum walks Continuous-time quantum walk (CTQW) over finite group schemes is investigated, where it is shown that some properties of a CTQW over a group scheme defined on a finite group G induces a CTQW over group scheme defined on G/H, where H is a normal subgroup of G with prime index. This reduction can be helpful in analyzing CTQW on underlying graphs of group schemes. Even though this claim is proved for normal subgroups with prime index (using the Clifford’s theorem from representation theory), it is checked in some examples that for other normal subgroups or even non-normal subgroups, the result is also true! Moreover, it is shown that the Bose-Mesner (BM) algebra associated with the group scheme over G is isomorphic to the corresponding BM algebra of the association scheme defined over the coset space G/H up to the scale factor |H|. In fact, we show that the underlying graph defined over group G is a covering space for the quotient graph defined over G/H, so that CTQW over the graph on G, starting from any arbitrary vertex, is isomorphic to the CTQW over the quotient graph on G/H if we take the sum of the amplitudes corresponding to the vertices belonging to the same cosets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Bose-Mesner algebra on finite G/H coset graphs and its application on continuous time quantum walks

Loading next page...
 
/lp/springer_journal/bose-mesner-algebra-on-finite-g-h-coset-graphs-and-its-application-on-KdJspTX1jf
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media, LLC
Subject
Physics; Theoretical, Mathematical and Computational Physics; Mathematics, general; Quantum Physics; Physics, general; Computer Science, general
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-011-0282-6
Publisher site
See Article on Publisher Site

Abstract

Continuous-time quantum walk (CTQW) over finite group schemes is investigated, where it is shown that some properties of a CTQW over a group scheme defined on a finite group G induces a CTQW over group scheme defined on G/H, where H is a normal subgroup of G with prime index. This reduction can be helpful in analyzing CTQW on underlying graphs of group schemes. Even though this claim is proved for normal subgroups with prime index (using the Clifford’s theorem from representation theory), it is checked in some examples that for other normal subgroups or even non-normal subgroups, the result is also true! Moreover, it is shown that the Bose-Mesner (BM) algebra associated with the group scheme over G is isomorphic to the corresponding BM algebra of the association scheme defined over the coset space G/H up to the scale factor |H|. In fact, we show that the underlying graph defined over group G is a covering space for the quotient graph defined over G/H, so that CTQW over the graph on G, starting from any arbitrary vertex, is isomorphic to the CTQW over the quotient graph on G/H if we take the sum of the amplitudes corresponding to the vertices belonging to the same cosets.

Journal

Quantum Information ProcessingSpringer Journals

Published: Aug 27, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off