Boron-containing phenolic–siloxane hybrid polymers through facile click chemistry route

Boron-containing phenolic–siloxane hybrid polymers through facile click chemistry route Realization of easily processable, tough phenolic functional polymer materials is of high demand for composite applications. Herein, we report the synthesis of boron-containing phenolic–siloxane hybrid polymers through a facile copper-catalysed azide–alkyne click chemistry (CuAAC) approach. For this, phenolic resoles incorporated with boron (PFB) was propargyl-derivatized and then bridged through triazole moieties using telechelic α, ω azidated polydimethylsiloxane (AZ-PDMS). The propargylated boronated PF (PFBPr) resins exhibited high heat of reaction during thermal cure due to the prevalence of multiple reactions. PFBPr-siloxane hybrid co-polymers exhibited glass transitions in the ranges – 100 to – 75 °C and at 25–35 °C corresponding to soft segment and hard segments. Pyrolysed PFBPr-siloxane products showed mixed phase heterogeneous systems of B and SiC. Introduction of boron and silicon improved the degree of graphitization and reduced the graphite crystallite size of the carbonization products. The pyrolysed compounds of silicon and boron formed during high temperature were conducive for creating a layer of void-free graphitic ordered carbon that improved with boron and silicon content, as revealed by SEM images. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Boron-containing phenolic–siloxane hybrid polymers through facile click chemistry route

Loading next page...
 
/lp/springer_journal/boron-containing-phenolic-siloxane-hybrid-polymers-through-facile-bgt4LhGiYa
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1737-7
Publisher site
See Article on Publisher Site

Abstract

Realization of easily processable, tough phenolic functional polymer materials is of high demand for composite applications. Herein, we report the synthesis of boron-containing phenolic–siloxane hybrid polymers through a facile copper-catalysed azide–alkyne click chemistry (CuAAC) approach. For this, phenolic resoles incorporated with boron (PFB) was propargyl-derivatized and then bridged through triazole moieties using telechelic α, ω azidated polydimethylsiloxane (AZ-PDMS). The propargylated boronated PF (PFBPr) resins exhibited high heat of reaction during thermal cure due to the prevalence of multiple reactions. PFBPr-siloxane hybrid co-polymers exhibited glass transitions in the ranges – 100 to – 75 °C and at 25–35 °C corresponding to soft segment and hard segments. Pyrolysed PFBPr-siloxane products showed mixed phase heterogeneous systems of B and SiC. Introduction of boron and silicon improved the degree of graphitization and reduced the graphite crystallite size of the carbonization products. The pyrolysed compounds of silicon and boron formed during high temperature were conducive for creating a layer of void-free graphitic ordered carbon that improved with boron and silicon content, as revealed by SEM images.

Journal

Journal of Materials ScienceSpringer Journals

Published: Oct 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off