Bone marrow mesenchymal stem cells ameliorate lung injury through anti-inflammatory and antibacterial effect in COPD mice

Bone marrow mesenchymal stem cells ameliorate lung injury through anti-inflammatory and... The anti-inflammatory and antibacterial mechanisms of bone marrow mesenchymal stem cells (MSCs) ameliorating lung injury in chronic obstructive pulmonary disease (COPD) mice induced by cigarette smoke and Haemophilus Parainfluenza (HPi) were studied. The experiment was divided into four groups in vivo: control group, COPD group, COPD+HPi group, and COPD+HPi+MSCs group. The indexes of emphysematous changes, inflammatory reaction and lung injury score, and antibacterial effects were evaluated in all groups. As compared with control group, emphysematous changes were significantly aggravated in COPD group, COPD+HPi group and COPD+HPi+MSCs group (P<0.01), the expression of necrosis factor-kappaB (NF-κB) signal pathway and proinflammatory cytokines in bronchoalveolar lavage fluid (BALF) were increased (P<0.01), and the phagocytic activity of alveolar macrophages was downregulated (P<0.01). As compared with COPD group, lung injury score, inflammatory cells and proinflammatory cytokines were significantly increased in the BALF of COPD+HPi group and COPD+HPi+MSCs group (P<0.01). As compared with COPD+HPi group, the expression of tumor necrosis factor-α stimulated protein/gene 6 (TSG-6) was increased, the NF-κB signal pathway was depressed, proinflammatory cytokine was significantly reduced, the anti-inflammatory cytokine IL-10 was increased, and lung injury score was significantly reduced in COPD+HPi+MSCs group. Meanwhile, the phagocytic activity of alveolar macrophages was significantly enhanced and bacterial counts in the lung were decreased. The results indicated cigarette smoke caused emphysematous changes in mice and the phagocytic activity of alveolar macrophages was decreased. The lung injury of acute exacerbation of COPD mice induced by cigarette smoke and HPi was alleviated through MSCs transplantation, which may be attributed to the fact that MSCs could promote macrophages into anti-inflammatory phenotype through secreting TSG-6, inhibit NF-кB signaling pathway, and reduce inflammatory response through reducing proinflammatory cytokines and promoting the expression of the anti-inflammatory cytokine. Simultaneously, MSCs could enhance phagocytic activity of macrophages and bacterial clearance. Meanwhile, we detected anti-inflammatory and antibacterial activity of macrophages regulated by MSCs in vitro. As compared with RAW264.7+HPi+CSE group, the expression of NF-кB p65, IL-1β, IL-6 and TNF-α was significantly reduced, and the phagocytic activity of macrophages was significantly increased in RAW264.7+HPi+CSE+MSCs group (P<0.01). The result indicated the macrophages co-cultured with MSCs may inhibit NF-кB signaling pathway and promote phagocytosis by paracrine mechanism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Huazhong University of Science and Technology [Medical Sciences] Springer Journals

Bone marrow mesenchymal stem cells ameliorate lung injury through anti-inflammatory and antibacterial effect in COPD mice

Loading next page...
 
/lp/springer_journal/bone-marrow-mesenchymal-stem-cells-ameliorate-lung-injury-through-anti-NGEsR0PtXk
Publisher
Huazhong University of Science and Technology
Copyright
Copyright © 2017 by Huazhong University of Science and Technology and Springer-Verlag GmbH Germany
Subject
Medicine & Public Health; Medicine/Public Health, general
ISSN
1672-0733
eISSN
1993-1352
D.O.I.
10.1007/s11596-017-1763-3
Publisher site
See Article on Publisher Site

Abstract

The anti-inflammatory and antibacterial mechanisms of bone marrow mesenchymal stem cells (MSCs) ameliorating lung injury in chronic obstructive pulmonary disease (COPD) mice induced by cigarette smoke and Haemophilus Parainfluenza (HPi) were studied. The experiment was divided into four groups in vivo: control group, COPD group, COPD+HPi group, and COPD+HPi+MSCs group. The indexes of emphysematous changes, inflammatory reaction and lung injury score, and antibacterial effects were evaluated in all groups. As compared with control group, emphysematous changes were significantly aggravated in COPD group, COPD+HPi group and COPD+HPi+MSCs group (P<0.01), the expression of necrosis factor-kappaB (NF-κB) signal pathway and proinflammatory cytokines in bronchoalveolar lavage fluid (BALF) were increased (P<0.01), and the phagocytic activity of alveolar macrophages was downregulated (P<0.01). As compared with COPD group, lung injury score, inflammatory cells and proinflammatory cytokines were significantly increased in the BALF of COPD+HPi group and COPD+HPi+MSCs group (P<0.01). As compared with COPD+HPi group, the expression of tumor necrosis factor-α stimulated protein/gene 6 (TSG-6) was increased, the NF-κB signal pathway was depressed, proinflammatory cytokine was significantly reduced, the anti-inflammatory cytokine IL-10 was increased, and lung injury score was significantly reduced in COPD+HPi+MSCs group. Meanwhile, the phagocytic activity of alveolar macrophages was significantly enhanced and bacterial counts in the lung were decreased. The results indicated cigarette smoke caused emphysematous changes in mice and the phagocytic activity of alveolar macrophages was decreased. The lung injury of acute exacerbation of COPD mice induced by cigarette smoke and HPi was alleviated through MSCs transplantation, which may be attributed to the fact that MSCs could promote macrophages into anti-inflammatory phenotype through secreting TSG-6, inhibit NF-кB signaling pathway, and reduce inflammatory response through reducing proinflammatory cytokines and promoting the expression of the anti-inflammatory cytokine. Simultaneously, MSCs could enhance phagocytic activity of macrophages and bacterial clearance. Meanwhile, we detected anti-inflammatory and antibacterial activity of macrophages regulated by MSCs in vitro. As compared with RAW264.7+HPi+CSE group, the expression of NF-кB p65, IL-1β, IL-6 and TNF-α was significantly reduced, and the phagocytic activity of macrophages was significantly increased in RAW264.7+HPi+CSE+MSCs group (P<0.01). The result indicated the macrophages co-cultured with MSCs may inhibit NF-кB signaling pathway and promote phagocytosis by paracrine mechanism.

Journal

Journal of Huazhong University of Science and Technology [Medical Sciences]Springer Journals

Published: Aug 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off