Body–foot geometries as revealed by perturbed obstacle position with different time constraints

Body–foot geometries as revealed by perturbed obstacle position with different time constraints This study examined the geometrical relationships between the feet, pelvis and an environmental obstruction when crossing an obstacle with unexpected changes to its position. Nine healthy young adults stepped over an obstacle 19 cm high with their right leg leading. The obstacle could be static or advanced at either lead (early detection) or trail (late detection) foot contact prior to clearance to force an adaptive reorganization of body–foot geometry and foot proximity to the obstacle. Stride length, minimum foot clearance over the obstacle, and foot-obstacle horizontal proximity before and after clearance were measured along with the relative position of the pelvis to each foot at eight points (four for each foot) during approach and clearance: heel contacts before and after crossing the obstacle, maximum foot heights and foot clearances. With early obstacle movement, trail limb stride length before crossing was lengthened, but foot proximity was still far from the final obstacle position. Clearance was less affected for the trail foot as compared to the lead foot. Proximity of the lead limb following clearance was the same for both early and late perturbations and closer than for the static obstacle condition. For relative body–foot positioning, significant differences were found only in the anterior-posterior direction. Following obstacle displacement, body–foot geometry was initially adapted, but then re-established to static obstacle values with an apparent focus on a balance geometry with the forward placed foot establishing new contact. These findings support an overall balance geometry that can be temporarily adjusted and coordinated with foot proximity to the obstruction to maintain continual gait and safe clearance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Brain Research Springer Journals

Body–foot geometries as revealed by perturbed obstacle position with different time constraints

Loading next page...
 
/lp/springer_journal/body-foot-geometries-as-revealed-by-perturbed-obstacle-position-with-ZPiBY2V0wa
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Biomedicine; Neurosciences; Neurology
ISSN
0014-4819
eISSN
1432-1106
D.O.I.
10.1007/s00221-017-5161-7
Publisher site
See Article on Publisher Site

Abstract

This study examined the geometrical relationships between the feet, pelvis and an environmental obstruction when crossing an obstacle with unexpected changes to its position. Nine healthy young adults stepped over an obstacle 19 cm high with their right leg leading. The obstacle could be static or advanced at either lead (early detection) or trail (late detection) foot contact prior to clearance to force an adaptive reorganization of body–foot geometry and foot proximity to the obstacle. Stride length, minimum foot clearance over the obstacle, and foot-obstacle horizontal proximity before and after clearance were measured along with the relative position of the pelvis to each foot at eight points (four for each foot) during approach and clearance: heel contacts before and after crossing the obstacle, maximum foot heights and foot clearances. With early obstacle movement, trail limb stride length before crossing was lengthened, but foot proximity was still far from the final obstacle position. Clearance was less affected for the trail foot as compared to the lead foot. Proximity of the lead limb following clearance was the same for both early and late perturbations and closer than for the static obstacle condition. For relative body–foot positioning, significant differences were found only in the anterior-posterior direction. Following obstacle displacement, body–foot geometry was initially adapted, but then re-established to static obstacle values with an apparent focus on a balance geometry with the forward placed foot establishing new contact. These findings support an overall balance geometry that can be temporarily adjusted and coordinated with foot proximity to the obstruction to maintain continual gait and safe clearance.

Journal

Experimental Brain ResearchSpringer Journals

Published: Jan 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off