Blue Light Modulation of Ion Transport in the slime Mutant of Neurospora crassa

Blue Light Modulation of Ion Transport in the slime Mutant of Neurospora crassa Blue light is the primary entrainment signal for a number of developmental and morphological processes in the lower eucaryote Neurospora crassa. Blue light regulates photoactivation of carotenoid synthesis, conidiation, phototropism of perithecia and circadian rhythms. Changes in the electrical properties of the plasma membrane are one of the fastest responses to blue light irradiation. To enable patch-clamp studies on light-induced ion channel activity, the wall-less slime mutant was used. Patch-clamp experiments were complemented by non-invasive ion-selective measurements of light-induced ion fluxes of slime cells using the vibrating probe technique. Blue light usually caused a decrease in conductance within 2–5 minutes at both negative and positive voltages, and a negative shift in the reversal potential in whole-cell patch-clamp measurements. Both K+ and Cl- channels contribute to the inward and outward currents, based on the effects of TEA (10 mM) and DIDS (500 mM). However, the negative shift in the reversal potential indicates that under blue light the Cl- conductance becomes dominant in the electrical properties of the slime cells due to a decrease of K+ conductance. The ion-selective probe revealed that blue light induced the following changes in the net ion fluxes within 5 minutes: 1) decrease in H+ influx; 2) increase in K+ efflux; and 3) increase in Cl- influx. Ca2+ flux was unchanged. Therefore, blue light regulates an ensemble of transport processes: H+, Cl-, and K+ transport. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Blue Light Modulation of Ion Transport in the slime Mutant of Neurospora crassa

Loading next page...
 
/lp/springer_journal/blue-light-modulation-of-ion-transport-in-the-slime-mutant-of-EUeMJag9xz
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-001-0185-z
Publisher site
See Article on Publisher Site

Abstract

Blue light is the primary entrainment signal for a number of developmental and morphological processes in the lower eucaryote Neurospora crassa. Blue light regulates photoactivation of carotenoid synthesis, conidiation, phototropism of perithecia and circadian rhythms. Changes in the electrical properties of the plasma membrane are one of the fastest responses to blue light irradiation. To enable patch-clamp studies on light-induced ion channel activity, the wall-less slime mutant was used. Patch-clamp experiments were complemented by non-invasive ion-selective measurements of light-induced ion fluxes of slime cells using the vibrating probe technique. Blue light usually caused a decrease in conductance within 2–5 minutes at both negative and positive voltages, and a negative shift in the reversal potential in whole-cell patch-clamp measurements. Both K+ and Cl- channels contribute to the inward and outward currents, based on the effects of TEA (10 mM) and DIDS (500 mM). However, the negative shift in the reversal potential indicates that under blue light the Cl- conductance becomes dominant in the electrical properties of the slime cells due to a decrease of K+ conductance. The ion-selective probe revealed that blue light induced the following changes in the net ion fluxes within 5 minutes: 1) decrease in H+ influx; 2) increase in K+ efflux; and 3) increase in Cl- influx. Ca2+ flux was unchanged. Therefore, blue light regulates an ensemble of transport processes: H+, Cl-, and K+ transport.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Mar 18, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off