Blood pressure in 15 inbred mouse strains and its lack of relation with obesity and insulin resistance in the progeny of an NZO/HILtJ × C3H/HeJ intercross

Blood pressure in 15 inbred mouse strains and its lack of relation with obesity and insulin... We characterized the systolic and diastolic blood pressures of 10-week-old males from 15 inbred mouse strains and found that blood pressures among strains were continuously distributed and that strain C3H/HeJ had the lowest mean systolic and diastolic pressure (100.5 ± 3.2 and 66.8 ± 3.5 mmHg), and a strain with obesity and diabetes, NZO/HILtJ, had the highest (132.4 ± 3.1 and 86.6 ± 6.9 mmHg). To understand the relationship of blood pressure with insulin resistance and obesity, we produced F1 and F2 progeny from reciprocal crosses of NZO, the strain with obesity, diabetes, and high blood pressure, and the strain with the lowest blood pressures, C3H/HeJ. Mean systolic pressures of 10-week-old (NZO × C3H)F1 and (C3H × NZO)F1 males were similar to each other (114.9 ± 3.8 and 117.2 ± 5.0 mmHg) and were intermediate to those of the parental strains. Systolic pressure of F2 males (n = 223) was distributed normally about the mean, suggesting that blood pressure is a polygenic trait. The body mass index (BMI) and plasma insulin levels of F2 progeny correlated significantly and positively with plasma leptin levels, suggesting that obesity is associated with insulin resistance. In contrast, systolic pressure did not correlate with BMI, plasma leptin levels, and plasma insulin levels, suggesting that genes underlying the development of hypertension in this intercross are not associated with the development of obesity and insulin resistance. Our results demonstrate that the progeny of NZO and C3H intercrosses are a practical and powerful tool for identifying blood pressure genes and for understanding human polygenic hypertension. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Blood pressure in 15 inbred mouse strains and its lack of relation with obesity and insulin resistance in the progeny of an NZO/HILtJ × C3H/HeJ intercross

Loading next page...
 
/lp/springer_journal/blood-pressure-in-15-inbred-mouse-strains-and-its-lack-of-relation-lbDE50vhwK
Publisher
Springer Journals
Copyright
Copyright © 2004 by Springer Science + Business Media Inc.
Subject
Life Sciences; Anatomy; Cell Biology; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-004-2411-3
Publisher site
See Article on Publisher Site

Abstract

We characterized the systolic and diastolic blood pressures of 10-week-old males from 15 inbred mouse strains and found that blood pressures among strains were continuously distributed and that strain C3H/HeJ had the lowest mean systolic and diastolic pressure (100.5 ± 3.2 and 66.8 ± 3.5 mmHg), and a strain with obesity and diabetes, NZO/HILtJ, had the highest (132.4 ± 3.1 and 86.6 ± 6.9 mmHg). To understand the relationship of blood pressure with insulin resistance and obesity, we produced F1 and F2 progeny from reciprocal crosses of NZO, the strain with obesity, diabetes, and high blood pressure, and the strain with the lowest blood pressures, C3H/HeJ. Mean systolic pressures of 10-week-old (NZO × C3H)F1 and (C3H × NZO)F1 males were similar to each other (114.9 ± 3.8 and 117.2 ± 5.0 mmHg) and were intermediate to those of the parental strains. Systolic pressure of F2 males (n = 223) was distributed normally about the mean, suggesting that blood pressure is a polygenic trait. The body mass index (BMI) and plasma insulin levels of F2 progeny correlated significantly and positively with plasma leptin levels, suggesting that obesity is associated with insulin resistance. In contrast, systolic pressure did not correlate with BMI, plasma leptin levels, and plasma insulin levels, suggesting that genes underlying the development of hypertension in this intercross are not associated with the development of obesity and insulin resistance. Our results demonstrate that the progeny of NZO and C3H intercrosses are a practical and powerful tool for identifying blood pressure genes and for understanding human polygenic hypertension.

Journal

Mammalian GenomeSpringer Journals

Published: Jan 1, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off