Blood-Brain Barrier Permeation: Molecular Parameters Governing Passive Diffusion

Blood-Brain Barrier Permeation: Molecular Parameters Governing Passive Diffusion 53 compounds with clinically established ability to cross or not to cross the blood-brain barrier by passive diffusion were characterized by means of surface activity measurements in terms of three parameters, i.e., the air-water partition coefficient, K aw , the critical micelle concentration, CMC D , and the cross-sectional area, A D . A three-dimensional plot in which the surface area, A D , is plotted as a function of K −1 aw and CMC D shows essentially three groups of compounds: (i) very hydrophobic compounds with large air-water partition coefficients and large cross-sectional areas, A D > 80 Å2 which do not cross the blood-brain barrier, (ii) compounds with lower air-water partition coefficients and an average cross-sectional area, A D ≅ 50 Å2 which easily cross the blood-brain barrier, and (iii) hydrophilic compounds with low air-water partition coefficients (A D < 50 Å2) which cross the blood-brain barrier only if applied at high concentrations. It was shown that the lipid membrane-water partition coefficient, K lw , measured previously, can be correlated with the air-water partition coefficient if the additional work against the internal lateral bilayer pressure, π bi = 34 ± 4 mN/m is taken into account. The partitioning into anisotropic lipid membranes decreases exponentially with increasing cross-sectional areas, A D , according to K lw =const. K aw exp(−A D π bi /kT) where kT is the thermal energy. The cross-sectional area of the molecule oriented at a hydrophilic-hydrophobic interface is thus the main determinant for membrane permeation provided the molecule is surface active and has a pK a > 4 for acids and a pK a < 10 for bases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Blood-Brain Barrier Permeation: Molecular Parameters Governing Passive Diffusion

Loading next page...
 
/lp/springer_journal/blood-brain-barrier-permeation-molecular-parameters-governing-passive-c0C2WBsjpg
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900434
Publisher site
See Article on Publisher Site

Abstract

53 compounds with clinically established ability to cross or not to cross the blood-brain barrier by passive diffusion were characterized by means of surface activity measurements in terms of three parameters, i.e., the air-water partition coefficient, K aw , the critical micelle concentration, CMC D , and the cross-sectional area, A D . A three-dimensional plot in which the surface area, A D , is plotted as a function of K −1 aw and CMC D shows essentially three groups of compounds: (i) very hydrophobic compounds with large air-water partition coefficients and large cross-sectional areas, A D > 80 Å2 which do not cross the blood-brain barrier, (ii) compounds with lower air-water partition coefficients and an average cross-sectional area, A D ≅ 50 Å2 which easily cross the blood-brain barrier, and (iii) hydrophilic compounds with low air-water partition coefficients (A D < 50 Å2) which cross the blood-brain barrier only if applied at high concentrations. It was shown that the lipid membrane-water partition coefficient, K lw , measured previously, can be correlated with the air-water partition coefficient if the additional work against the internal lateral bilayer pressure, π bi = 34 ± 4 mN/m is taken into account. The partitioning into anisotropic lipid membranes decreases exponentially with increasing cross-sectional areas, A D , according to K lw =const. K aw exp(−A D π bi /kT) where kT is the thermal energy. The cross-sectional area of the molecule oriented at a hydrophilic-hydrophobic interface is thus the main determinant for membrane permeation provided the molecule is surface active and has a pK a > 4 for acids and a pK a < 10 for bases.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Oct 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off