Bitwise dimensional co-clustering for analytical workloads

Bitwise dimensional co-clustering for analytical workloads Analytical workloads in data warehouses often include heavy joins where queries involve multiple fact tables in addition to the typical star-patterns, dimensional grouping and selections. In this paper we propose a new processing and storage framework called bitwise dimensional co-clustering (BDCC) that avoids replication and thus keeps updates fast, yet is able to accelerate all these foreign key joins, efficiently support grouping and pushes down most dimensional selections. The core idea of BDCC is to cluster each table on a mix of dimensions, each possibly derived from attributes imported over an incoming foreign key and this way creating foreign key connected tables with partially shared clusterings. These are later used to accelerate any join between two tables that have some dimension in common and additionally permit to push down and propagate selections (reduce I/O) and accelerate aggregation and ordering operations. Besides the general framework, we describe an algorithm to derive such a physical co-clustering database automatically and describe query processing and query optimization techniques that can easily be fitted into existing relational engines. We present an experimental evaluation on the TPC-H benchmark in the Vectorwise system, showing that co-clustering can significantly enhance its already high performance and at the same time significantly reduce the memory consumption of the system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Bitwise dimensional co-clustering for analytical workloads

Loading next page...
 
/lp/springer_journal/bitwise-dimensional-co-clustering-for-analytical-workloads-iUHwPQ46Yl
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-015-0417-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial