Bitwise dimensional co-clustering for analytical workloads

Bitwise dimensional co-clustering for analytical workloads Analytical workloads in data warehouses often include heavy joins where queries involve multiple fact tables in addition to the typical star-patterns, dimensional grouping and selections. In this paper we propose a new processing and storage framework called bitwise dimensional co-clustering (BDCC) that avoids replication and thus keeps updates fast, yet is able to accelerate all these foreign key joins, efficiently support grouping and pushes down most dimensional selections. The core idea of BDCC is to cluster each table on a mix of dimensions, each possibly derived from attributes imported over an incoming foreign key and this way creating foreign key connected tables with partially shared clusterings. These are later used to accelerate any join between two tables that have some dimension in common and additionally permit to push down and propagate selections (reduce I/O) and accelerate aggregation and ordering operations. Besides the general framework, we describe an algorithm to derive such a physical co-clustering database automatically and describe query processing and query optimization techniques that can easily be fitted into existing relational engines. We present an experimental evaluation on the TPC-H benchmark in the Vectorwise system, showing that co-clustering can significantly enhance its already high performance and at the same time significantly reduce the memory consumption of the system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Bitwise dimensional co-clustering for analytical workloads

Loading next page...
 
/lp/springer_journal/bitwise-dimensional-co-clustering-for-analytical-workloads-iUHwPQ46Yl
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-015-0417-y
Publisher site
See Article on Publisher Site

Abstract

Analytical workloads in data warehouses often include heavy joins where queries involve multiple fact tables in addition to the typical star-patterns, dimensional grouping and selections. In this paper we propose a new processing and storage framework called bitwise dimensional co-clustering (BDCC) that avoids replication and thus keeps updates fast, yet is able to accelerate all these foreign key joins, efficiently support grouping and pushes down most dimensional selections. The core idea of BDCC is to cluster each table on a mix of dimensions, each possibly derived from attributes imported over an incoming foreign key and this way creating foreign key connected tables with partially shared clusterings. These are later used to accelerate any join between two tables that have some dimension in common and additionally permit to push down and propagate selections (reduce I/O) and accelerate aggregation and ordering operations. Besides the general framework, we describe an algorithm to derive such a physical co-clustering database automatically and describe query processing and query optimization techniques that can easily be fitted into existing relational engines. We present an experimental evaluation on the TPC-H benchmark in the Vectorwise system, showing that co-clustering can significantly enhance its already high performance and at the same time significantly reduce the memory consumption of the system.

Journal

The VLDB JournalSpringer Journals

Published: Jun 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off