Bitstream-Oriented Protection for the H.264/Scalable Video Coding (SVC)

Bitstream-Oriented Protection for the H.264/Scalable Video Coding (SVC) The newly standardized H.264/SVC enable multimedia suppliers to provide video bitstream with temporal, spatial and quality scalabilities to meet various needs of end users. Its bitstream scalability characteristic is also especially suitable for multimedia applications under merged heterogeneous networks with different network protocols, capacities and throughputs. Although the network environment, to some extent, provides security protection against the illegal users, it is not enough to protect against the authorized users from digesting contents beyond its authorization. Hence the issue of content protection for the H.264/SVC has aroused researchers’ interests in recent years. In this paper, we present an efficient bitstream-oriented protection scheme for the H.264/SVC in a compression friendly and format compliant manner. The encryption is implemented on the Network Abstraction Layer (NAL) unit level. To improve the computational efficiency as well as to provide sufficient security, selective cryptographic algorithms with different computation cost are employed for different content level of SVC according to its significance. The I slice NAL units from the base layer of SVC bitstream are encrypted with the symmetric AES algorithm in Cipher Block Chaining mode. And the other NAL units are protected by simplified XOR cipher. Furthermore, a robust key management (key generation and distribution) mechanism is also discussed in this paper. The security analysis and simulation results further verify that the proposed methods can effectively protect the H.264/SVC bitstream at low computational cost. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Bitstream-Oriented Protection for the H.264/Scalable Video Coding (SVC)

Loading next page...
 
/lp/springer_journal/bitstream-oriented-protection-for-the-h-264-scalable-video-coding-svc-k7hOo79GSw
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4771-5
Publisher site
See Article on Publisher Site

Abstract

The newly standardized H.264/SVC enable multimedia suppliers to provide video bitstream with temporal, spatial and quality scalabilities to meet various needs of end users. Its bitstream scalability characteristic is also especially suitable for multimedia applications under merged heterogeneous networks with different network protocols, capacities and throughputs. Although the network environment, to some extent, provides security protection against the illegal users, it is not enough to protect against the authorized users from digesting contents beyond its authorization. Hence the issue of content protection for the H.264/SVC has aroused researchers’ interests in recent years. In this paper, we present an efficient bitstream-oriented protection scheme for the H.264/SVC in a compression friendly and format compliant manner. The encryption is implemented on the Network Abstraction Layer (NAL) unit level. To improve the computational efficiency as well as to provide sufficient security, selective cryptographic algorithms with different computation cost are employed for different content level of SVC according to its significance. The I slice NAL units from the base layer of SVC bitstream are encrypted with the symmetric AES algorithm in Cipher Block Chaining mode. And the other NAL units are protected by simplified XOR cipher. Furthermore, a robust key management (key generation and distribution) mechanism is also discussed in this paper. The security analysis and simulation results further verify that the proposed methods can effectively protect the H.264/SVC bitstream at low computational cost.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Aug 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off