Biotechnological Method for Production of Recombinant Peptide Analgesic (Purotoxin-1) from Geolycosa sp. Spider Poison

Biotechnological Method for Production of Recombinant Peptide Analgesic (Purotoxin-1) from... Severe chronic and sometimes incurable diseases are frequently accompanied by a pain syndrome. Purotoxin-1, isolated from the poison of the Central Asian Geolycosa sp. spider and selectively inhibiting the purinergic P2X3 receptor (which is considered as a target for the control of the pain states), is one potentially highly effective drug with an analgesic effect. To produce the recombinant purotoxin-1, we created four genetically engineered constructions with different carrier proteins for the expression in E. coli: pTRX-PT1, pCBD-PT1, pGyrA-PT1, pDnaB-PT1. The construction with mini-intein DnaB from the Synechocystis sp. was the most efficient. Using the E. coli C3030/pDnaB-PT1 producer strain, the laboratory method, based on which a pilot technology of recombinant purotoxin-1 production was developed as a result of optimization and scaling, was created. Six grams of recombinant PT1 preparation with the confirmed pharmacological purity was developed for preclinical trials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Bioorganic Chemistry Springer Journals

Biotechnological Method for Production of Recombinant Peptide Analgesic (Purotoxin-1) from Geolycosa sp. Spider Poison

Loading next page...
 
/lp/springer_journal/biotechnological-method-for-production-of-recombinant-peptide-gzKinub104
Publisher
Springer Journals
Copyright
Copyright © 2018 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Biochemistry, general; Bioorganic Chemistry; Organic Chemistry; Biomedicine, general
ISSN
1068-1620
eISSN
1608-330X
D.O.I.
10.1134/S1068162018010065
Publisher site
See Article on Publisher Site

Abstract

Severe chronic and sometimes incurable diseases are frequently accompanied by a pain syndrome. Purotoxin-1, isolated from the poison of the Central Asian Geolycosa sp. spider and selectively inhibiting the purinergic P2X3 receptor (which is considered as a target for the control of the pain states), is one potentially highly effective drug with an analgesic effect. To produce the recombinant purotoxin-1, we created four genetically engineered constructions with different carrier proteins for the expression in E. coli: pTRX-PT1, pCBD-PT1, pGyrA-PT1, pDnaB-PT1. The construction with mini-intein DnaB from the Synechocystis sp. was the most efficient. Using the E. coli C3030/pDnaB-PT1 producer strain, the laboratory method, based on which a pilot technology of recombinant purotoxin-1 production was developed as a result of optimization and scaling, was created. Six grams of recombinant PT1 preparation with the confirmed pharmacological purity was developed for preclinical trials.

Journal

Russian Journal of Bioorganic ChemistrySpringer Journals

Published: Mar 14, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off