Biosynthesis of polyunsaturated fatty acids in zooxanthellae and polyps of corals

Biosynthesis of polyunsaturated fatty acids in zooxanthellae and polyps of corals The fatty acid (FA) composition of zooxanthellae, polyp tissue, and intact colonies was determined in soft coral Sinularia sp. and hard coral Acropora sp. Analysis of the distribution of polyunsaturated fatty acids (PUFAs) among the zooxanthellae and the host organism showed that 18: 3n-6 and C18–22 PUFAs of the n-3 series (18: 4n-3, 20: 5n-3, 22: 5n-3, and 22: 6n-3) were mainly synthesized by the zooxanthellae and that C20–22 PUFAs of the n-6 series (20: 3n-6, 20: 4n-6, and 22: 4n-6) were synthesized in the polyp tissue. Soft coral polyps were able to synthesize tetracosapolyenoic FAs (24: 5n-6 and 24: 6n-3) and 18: 2n-7, their zooxanthellae synthesized C16 PUFAs (16: 2n-7, 16: 3n-4, and 16: 4n-1). It is supposed that the biosynthesis of 16: 2n-7 in Sinularia sp. and 18: 3n-6 in Acropora sp. is catalyzed by Δ6 desaturase. The relatively even distribution of three FAs (18: 2n-6, 18: 3n-6, and 16: 2n-7) among lipids of zooxanthellae and coral polyps indicates the possible transport of these FAs between symbionts and the host organism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Marine Biology Springer Journals

Biosynthesis of polyunsaturated fatty acids in zooxanthellae and polyps of corals

Loading next page...
 
/lp/springer_journal/biosynthesis-of-polyunsaturated-fatty-acids-in-zooxanthellae-and-RJ0Hzr4Vx6
Publisher
Springer Journals
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Freshwater & Marine Ecology
ISSN
1063-0740
eISSN
1608-3377
D.O.I.
10.1134/S1063074010060076
Publisher site
See Article on Publisher Site

Abstract

The fatty acid (FA) composition of zooxanthellae, polyp tissue, and intact colonies was determined in soft coral Sinularia sp. and hard coral Acropora sp. Analysis of the distribution of polyunsaturated fatty acids (PUFAs) among the zooxanthellae and the host organism showed that 18: 3n-6 and C18–22 PUFAs of the n-3 series (18: 4n-3, 20: 5n-3, 22: 5n-3, and 22: 6n-3) were mainly synthesized by the zooxanthellae and that C20–22 PUFAs of the n-6 series (20: 3n-6, 20: 4n-6, and 22: 4n-6) were synthesized in the polyp tissue. Soft coral polyps were able to synthesize tetracosapolyenoic FAs (24: 5n-6 and 24: 6n-3) and 18: 2n-7, their zooxanthellae synthesized C16 PUFAs (16: 2n-7, 16: 3n-4, and 16: 4n-1). It is supposed that the biosynthesis of 16: 2n-7 in Sinularia sp. and 18: 3n-6 in Acropora sp. is catalyzed by Δ6 desaturase. The relatively even distribution of three FAs (18: 2n-6, 18: 3n-6, and 16: 2n-7) among lipids of zooxanthellae and coral polyps indicates the possible transport of these FAs between symbionts and the host organism.

Journal

Russian Journal of Marine BiologySpringer Journals

Published: Jan 18, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off