Biosynthesis of fatty oils in higher plants

Biosynthesis of fatty oils in higher plants Triacylglycerols (TAGs) are one of the most important storage compounds of higher plants; they are the basis for essentially all plant oils and are used by the cell as a reserve source of energy and carbon. Therefore, as a rule, plants store oils almost exclusively in their seeds. Plant oils are not only a major food and feed products, but also the raw material for obtaining many nonfood products from drying oils and lubricants to biofuel. TAGs differ from other storage compounds in that in the course of fruit ripening their quantitative and qualitative composition does not remain constant, but undergoes significant changes. Therefore, the biosynthesis pathways of TAGs in living organisms have been actively studied for the past several decades, and today enough data can be presented to outline as how and where these processes occur in the plant cell. The present review is devoted to a brief description of current ideas about the ways and mechanisms of TAG formation and accumulation in higher plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Biosynthesis of fatty oils in higher plants

Loading next page...
 
/lp/springer_journal/biosynthesis-of-fatty-oils-in-higher-plants-8uYah4ZfqN
Publisher
Springer US
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443714010130
Publisher site
See Article on Publisher Site

Abstract

Triacylglycerols (TAGs) are one of the most important storage compounds of higher plants; they are the basis for essentially all plant oils and are used by the cell as a reserve source of energy and carbon. Therefore, as a rule, plants store oils almost exclusively in their seeds. Plant oils are not only a major food and feed products, but also the raw material for obtaining many nonfood products from drying oils and lubricants to biofuel. TAGs differ from other storage compounds in that in the course of fruit ripening their quantitative and qualitative composition does not remain constant, but undergoes significant changes. Therefore, the biosynthesis pathways of TAGs in living organisms have been actively studied for the past several decades, and today enough data can be presented to outline as how and where these processes occur in the plant cell. The present review is devoted to a brief description of current ideas about the ways and mechanisms of TAG formation and accumulation in higher plants.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Dec 28, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off