Biosorption of lanthanum and cerium from aqueous solutions by grapefruit peel: equilibrium, kinetic and thermodynamic studies

Biosorption of lanthanum and cerium from aqueous solutions by grapefruit peel: equilibrium,... The biosorption characteristics of lanthanum and cerium ions from aqueous solution by grapefruit peel have been investigated as a function of pH, biosorbent dosage, contact time, and temperature. The pH was found to be significantly affecting the biosorption performance: pH 5.0 was found to be an optimum pH for favorable biosorption of lanthanum and cerium ions. The experimental isotherm data were analyzed using Langmuir and Freundlich equations. The Langmuir model fits the equilibrium data better than the Freundlich model. According to the Langmuir equation, the maximum uptake for La(III) and Ce(III) ions were 171.20 and 159.30 mg/g, respectively. Pseudo-first-order and pseudo-second-order models were used to represent the kinetics of the process. The results show that the pseudo-second-order model is the one that best describes the kinetics of the biosorption of both metal ions. The calculated thermodynamic parameters (ΔG°, ΔH°, and ΔS°) show that the biosorption process is feasible, spontaneous, and endothermic at 20–50 °C. FTIR analysis demonstrates that carboxyl and hydroxyl groups are involved in the biosorption of the metal ions. This study shows that grapefruit peel has the potential of application as an efficient biosorbent for the removal of lanthanide elements from aqueous solutions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Biosorption of lanthanum and cerium from aqueous solutions by grapefruit peel: equilibrium, kinetic and thermodynamic studies

Loading next page...
 
/lp/springer_journal/biosorption-of-lanthanum-and-cerium-from-aqueous-solutions-by-4gUH8t09Nl
Publisher
Springer Journals
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-013-1210-4
Publisher site
See Article on Publisher Site

Abstract

The biosorption characteristics of lanthanum and cerium ions from aqueous solution by grapefruit peel have been investigated as a function of pH, biosorbent dosage, contact time, and temperature. The pH was found to be significantly affecting the biosorption performance: pH 5.0 was found to be an optimum pH for favorable biosorption of lanthanum and cerium ions. The experimental isotherm data were analyzed using Langmuir and Freundlich equations. The Langmuir model fits the equilibrium data better than the Freundlich model. According to the Langmuir equation, the maximum uptake for La(III) and Ce(III) ions were 171.20 and 159.30 mg/g, respectively. Pseudo-first-order and pseudo-second-order models were used to represent the kinetics of the process. The results show that the pseudo-second-order model is the one that best describes the kinetics of the biosorption of both metal ions. The calculated thermodynamic parameters (ΔG°, ΔH°, and ΔS°) show that the biosorption process is feasible, spontaneous, and endothermic at 20–50 °C. FTIR analysis demonstrates that carboxyl and hydroxyl groups are involved in the biosorption of the metal ions. This study shows that grapefruit peel has the potential of application as an efficient biosorbent for the removal of lanthanide elements from aqueous solutions.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Apr 30, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off