Biosorption of cadmium(II), lead(II) and cobalt(II) from aqueous solution by biochar from cones of larch (Larix decidua Mill. subsp. decidua) and spruce (Picea abies L. H. Karst)

Biosorption of cadmium(II), lead(II) and cobalt(II) from aqueous solution by biochar from cones... Because of their physicochemical properties, biochars can be used as sorption materials for removal of toxic substances. The purpose of the present study was to determine whether biochar obtained from cones of larch (Larix decidua Mill. subsp. decidua) and spruce (Picea abies L. H. Karst) could be used as a sorbent for Cd2+, Pb2+ and Co2+ in aqueous solutions. So far, this feedstock had not been tested in this respect. The material was subjected to pyrolysis at 500 and 600 °C for the duration of 5, 10 and 15 min. The obtained pyrolysates were found to differ in terms of pH and the contents of the essential macroelements. The different values of these parameters were determined for varying temperature, duration of the pyrolysis process and type of feedstock. Sorption capacities of the biochars for removal of Cd2+, Pb2+ and Co2+ were examined using simulated contamination of aqueous solutions with salts of these metals. The findings showed the highest, nearly complete, removal for Pb2+ were maximum 99.7%, and almost three times lower value for Cd2+ and Co2+ (respectively, 35.7 and 24.8%). It was demonstrated that pyrolysis of conifer cones produced optimum sorption capacities when the process was conducted at a temperature of 500 °C for the duration of 5 min. It was shown that products of spruce cone pyrolysis were characterized by better sorption capacity in comparison with products of larch cone pyrolysis. The properties of conifer cone biochar create the possibility of using it as an adsorbent in water and wastewater treatment as well as in production of filters and activated carbon. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Earth Sciences Springer Journals

Biosorption of cadmium(II), lead(II) and cobalt(II) from aqueous solution by biochar from cones of larch (Larix decidua Mill. subsp. decidua) and spruce (Picea abies L. H. Karst)

Loading next page...
 
/lp/springer_journal/biosorption-of-cadmium-ii-lead-ii-and-cobalt-ii-from-aqueous-solution-cmQLCxhwdr
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Earth Sciences; Geology; Hydrology/Water Resources; Geochemistry; Environmental Science and Engineering; Terrestrial Pollution; Biogeosciences
ISSN
1866-6280
eISSN
1866-6299
D.O.I.
10.1007/s12665-017-6916-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial