Bioregeneration of spent mercury bearing sulfur-impregnated activated carbon adsorbent

Bioregeneration of spent mercury bearing sulfur-impregnated activated carbon adsorbent Among various adsorbents studied, sulfur-impregnated activated carbon is one of the most promising adsorbents for mercury removal from flue gas. However, a large amount of spent activated carbons containing high content of mercury are generated after adsorption. To make the adsorption a more viable option, the regeneration and reuse of the spent activated carbon should be considered. The purpose of this study is to develop a novel technique for bioregeneration of sulfur-impregnated activated carbons after adsorption of mercury from flue gases by sulfur-oxidizing bacteria. The optimal operating parameters for this bioregeneration process were studied using central composite design (CCD) and response surface methodology (RSM). Results showed that the sulfur oxidation rate was increased with increasing activated carbon dosage. Furthermore, the increase of inoculum size only caused a slight increase of sulfur oxidation rate in the bioregeneration. The maximum mercury removal efficiency of more than 50% was obtained at 10% (w/v) activated carbon dosage and 20% (v/v) inoculum size. After the bioregeneration process, Brunauer–Emmett–Teller (BET) surface area and micropore volume of spent activated carbon increased due to the bio-oxidation of mercury bearing sulfur on the surface of activated carbons. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Bioregeneration of spent mercury bearing sulfur-impregnated activated carbon adsorbent

Loading next page...
 
/lp/springer_journal/bioregeneration-of-spent-mercury-bearing-sulfur-impregnated-activated-4ym6WVTzAc
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-9321-x
Publisher site
See Article on Publisher Site

Abstract

Among various adsorbents studied, sulfur-impregnated activated carbon is one of the most promising adsorbents for mercury removal from flue gas. However, a large amount of spent activated carbons containing high content of mercury are generated after adsorption. To make the adsorption a more viable option, the regeneration and reuse of the spent activated carbon should be considered. The purpose of this study is to develop a novel technique for bioregeneration of sulfur-impregnated activated carbons after adsorption of mercury from flue gases by sulfur-oxidizing bacteria. The optimal operating parameters for this bioregeneration process were studied using central composite design (CCD) and response surface methodology (RSM). Results showed that the sulfur oxidation rate was increased with increasing activated carbon dosage. Furthermore, the increase of inoculum size only caused a slight increase of sulfur oxidation rate in the bioregeneration. The maximum mercury removal efficiency of more than 50% was obtained at 10% (w/v) activated carbon dosage and 20% (v/v) inoculum size. After the bioregeneration process, Brunauer–Emmett–Teller (BET) surface area and micropore volume of spent activated carbon increased due to the bio-oxidation of mercury bearing sulfur on the surface of activated carbons.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Jun 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off