Biological role for synthesis and release of isoprene by photosynthesizing cells in view of the entropy phenomenon

Biological role for synthesis and release of isoprene by photosynthesizing cells in view of the... In this review, the issues of photobiological synthesis and release of isoprene by chlorophyll-containing cells are considered from the viewpoint of thermodynamics of open nonequilibrium systems, with an emphasis on fundamental significance of the entropy phenomenon. The excretory function of the living cell is envisioned as a result of the total release of energy by dissipative structures. The living cell metabolism represents a continuous transformation of a huge number of biologically significant chemical substances. The complex of these transformations results in maintenance of cell homeostasis. The cell functioning can be viewed as energy flows and matter conversions occurring on biological matrices. The flows of irreversible metabolic reactions proceed under steady-state condition of the system and ensure its balanced disequilibrium. The hypotheses considered in this review are based on the principles of energy dynamics; they permit the description of cell metabolism from the laws of nonequilibrium thermodynamics of open systems. It is concluded that the biogenic release of isoprene ensures entropy dissipation, which is required for regulation of fluxes leading to the formation of terpenoids and allowing the maintenance of cell homeostasis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Biological role for synthesis and release of isoprene by photosynthesizing cells in view of the entropy phenomenon

Loading next page...
 
/lp/springer_journal/biological-role-for-synthesis-and-release-of-isoprene-by-0wrzMDAsQW
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443716020114
Publisher site
See Article on Publisher Site

Abstract

In this review, the issues of photobiological synthesis and release of isoprene by chlorophyll-containing cells are considered from the viewpoint of thermodynamics of open nonequilibrium systems, with an emphasis on fundamental significance of the entropy phenomenon. The excretory function of the living cell is envisioned as a result of the total release of energy by dissipative structures. The living cell metabolism represents a continuous transformation of a huge number of biologically significant chemical substances. The complex of these transformations results in maintenance of cell homeostasis. The cell functioning can be viewed as energy flows and matter conversions occurring on biological matrices. The flows of irreversible metabolic reactions proceed under steady-state condition of the system and ensure its balanced disequilibrium. The hypotheses considered in this review are based on the principles of energy dynamics; they permit the description of cell metabolism from the laws of nonequilibrium thermodynamics of open systems. It is concluded that the biogenic release of isoprene ensures entropy dissipation, which is required for regulation of fluxes leading to the formation of terpenoids and allowing the maintenance of cell homeostasis.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Apr 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off