Biological role for synthesis and release of isoprene by photosynthesizing cells in view of the entropy phenomenon

Biological role for synthesis and release of isoprene by photosynthesizing cells in view of the... In this review, the issues of photobiological synthesis and release of isoprene by chlorophyll-containing cells are considered from the viewpoint of thermodynamics of open nonequilibrium systems, with an emphasis on fundamental significance of the entropy phenomenon. The excretory function of the living cell is envisioned as a result of the total release of energy by dissipative structures. The living cell metabolism represents a continuous transformation of a huge number of biologically significant chemical substances. The complex of these transformations results in maintenance of cell homeostasis. The cell functioning can be viewed as energy flows and matter conversions occurring on biological matrices. The flows of irreversible metabolic reactions proceed under steady-state condition of the system and ensure its balanced disequilibrium. The hypotheses considered in this review are based on the principles of energy dynamics; they permit the description of cell metabolism from the laws of nonequilibrium thermodynamics of open systems. It is concluded that the biogenic release of isoprene ensures entropy dissipation, which is required for regulation of fluxes leading to the formation of terpenoids and allowing the maintenance of cell homeostasis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Biological role for synthesis and release of isoprene by photosynthesizing cells in view of the entropy phenomenon

Loading next page...
 
/lp/springer_journal/biological-role-for-synthesis-and-release-of-isoprene-by-0wrzMDAsQW
Publisher
Pleiades Publishing
Copyright
Copyright © 2016 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443716020114
Publisher site
See Article on Publisher Site

Abstract

In this review, the issues of photobiological synthesis and release of isoprene by chlorophyll-containing cells are considered from the viewpoint of thermodynamics of open nonequilibrium systems, with an emphasis on fundamental significance of the entropy phenomenon. The excretory function of the living cell is envisioned as a result of the total release of energy by dissipative structures. The living cell metabolism represents a continuous transformation of a huge number of biologically significant chemical substances. The complex of these transformations results in maintenance of cell homeostasis. The cell functioning can be viewed as energy flows and matter conversions occurring on biological matrices. The flows of irreversible metabolic reactions proceed under steady-state condition of the system and ensure its balanced disequilibrium. The hypotheses considered in this review are based on the principles of energy dynamics; they permit the description of cell metabolism from the laws of nonequilibrium thermodynamics of open systems. It is concluded that the biogenic release of isoprene ensures entropy dissipation, which is required for regulation of fluxes leading to the formation of terpenoids and allowing the maintenance of cell homeostasis.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Apr 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off