Biological effects of high copper and zinc concentrations and their interaction in rapeseed plants

Biological effects of high copper and zinc concentrations and their interaction in rapeseed plants In experiments with rapeseed (Brassica napus L., cv. Westar) plants, it was confirmed that copper was considerably more toxic than zinc. The toxic effects of 50 and 150 μM CuSO4 were comparable to those of 1000 and 2500 μM ZnSO4. The analysis of the effects of these concentrations of copper and zinc on photosynthetic pigment contents and on the rate of lipid peroxidation did not reveal any reasons for different toxicities of these heavy metals (HM). Among biological effects studied, significant differences were found in the organ distribution of these metals in plants grown on both the standard medium and the medium with high concentrations of copper or zinc. Copper retained in the roots in relatively small amounts and was poorly transported over the aboveground part of the plants. It stayed mainly in the lower leaves, and its distribution changed only a little during the recovery of plants following the HM treatment. In contrast, zinc proved to be highly mobile, it was concentrated in the upper leaves and actively transported when the plants were transferred to a medium with the optimal HM concentrations. High copper concentrations slowed strongly zinc uptake by the roots but practically did not change its movement over the plant. In contrast, high zinc concentrations facilitated copper uptake by the roots but reduced its transfer to the aboveground organs. The data presented here allow us to hypothesize that biological peculiarities of organ and cellular distribution of copper and zinc in plants and interaction of these HM play an important role in the toxic effects of high concentrations of these HM and the mechanisms of adaptation to them at industrial environmental pollution used by rapeseed plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Biological effects of high copper and zinc concentrations and their interaction in rapeseed plants

Loading next page...
 
/lp/springer_journal/biological-effects-of-high-copper-and-zinc-concentrations-and-their-oOCzUxOGnZ
Publisher
Springer Journals
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443710060099
Publisher site
See Article on Publisher Site

Abstract

In experiments with rapeseed (Brassica napus L., cv. Westar) plants, it was confirmed that copper was considerably more toxic than zinc. The toxic effects of 50 and 150 μM CuSO4 were comparable to those of 1000 and 2500 μM ZnSO4. The analysis of the effects of these concentrations of copper and zinc on photosynthetic pigment contents and on the rate of lipid peroxidation did not reveal any reasons for different toxicities of these heavy metals (HM). Among biological effects studied, significant differences were found in the organ distribution of these metals in plants grown on both the standard medium and the medium with high concentrations of copper or zinc. Copper retained in the roots in relatively small amounts and was poorly transported over the aboveground part of the plants. It stayed mainly in the lower leaves, and its distribution changed only a little during the recovery of plants following the HM treatment. In contrast, zinc proved to be highly mobile, it was concentrated in the upper leaves and actively transported when the plants were transferred to a medium with the optimal HM concentrations. High copper concentrations slowed strongly zinc uptake by the roots but practically did not change its movement over the plant. In contrast, high zinc concentrations facilitated copper uptake by the roots but reduced its transfer to the aboveground organs. The data presented here allow us to hypothesize that biological peculiarities of organ and cellular distribution of copper and zinc in plants and interaction of these HM play an important role in the toxic effects of high concentrations of these HM and the mechanisms of adaptation to them at industrial environmental pollution used by rapeseed plants.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 31, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off