Biological effects of high copper and zinc concentrations and their interaction in rapeseed plants

Biological effects of high copper and zinc concentrations and their interaction in rapeseed plants In experiments with rapeseed (Brassica napus L., cv. Westar) plants, it was confirmed that copper was considerably more toxic than zinc. The toxic effects of 50 and 150 μM CuSO4 were comparable to those of 1000 and 2500 μM ZnSO4. The analysis of the effects of these concentrations of copper and zinc on photosynthetic pigment contents and on the rate of lipid peroxidation did not reveal any reasons for different toxicities of these heavy metals (HM). Among biological effects studied, significant differences were found in the organ distribution of these metals in plants grown on both the standard medium and the medium with high concentrations of copper or zinc. Copper retained in the roots in relatively small amounts and was poorly transported over the aboveground part of the plants. It stayed mainly in the lower leaves, and its distribution changed only a little during the recovery of plants following the HM treatment. In contrast, zinc proved to be highly mobile, it was concentrated in the upper leaves and actively transported when the plants were transferred to a medium with the optimal HM concentrations. High copper concentrations slowed strongly zinc uptake by the roots but practically did not change its movement over the plant. In contrast, high zinc concentrations facilitated copper uptake by the roots but reduced its transfer to the aboveground organs. The data presented here allow us to hypothesize that biological peculiarities of organ and cellular distribution of copper and zinc in plants and interaction of these HM play an important role in the toxic effects of high concentrations of these HM and the mechanisms of adaptation to them at industrial environmental pollution used by rapeseed plants. Russian Journal of Plant Physiology Springer Journals

Biological effects of high copper and zinc concentrations and their interaction in rapeseed plants

Loading next page...
SP MAIK Nauka/Interperiodica
Copyright © 2010 by Pleiades Publishing, Ltd.
Life Sciences; Plant Sciences ; Plant Physiology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial