Biological diversity of nitrile-metabolizing bacteria in soils of the Perm region affected by human activities

Biological diversity of nitrile-metabolizing bacteria in soils of the Perm region affected by... The diversity of bacteria metabolizing nitriles of carbonic acids was studied in soils of the Perm region affected by human activities. Effective methods for selective isolation of cultures possessing the nitrile hydratase and nitrilase activities were developed. Most microorganisms capable of utilizing nitriles were Grampositive Nocardia-like bacteria of the genus Rhodococcus. Isolates with a detectable nitrilase activity were also represented by Gram-negative forms (Gram-negative aerobic/microaerophilic bacilli and cocci of the genera Pseudomonas, Azomonas, Azotobacter, and Acidovorax). Two enzyme systems for nitrile hydrolysis were found in 27% of cultures. The nitrile hydratase and nitrilase activities of the studied strains exceeded these enzymatic activities in bacteria isolated from native soils, which indicates that natural selection of saprophytic microflora occurs in chemically altered soils. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Ecology Springer Journals

Biological diversity of nitrile-metabolizing bacteria in soils of the Perm region affected by human activities

Loading next page...
 
/lp/springer_journal/biological-diversity-of-nitrile-metabolizing-bacteria-in-soils-of-the-uZnEyb0rlw
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2007 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Ecology; Environment, general
ISSN
1067-4136
eISSN
1608-3334
D.O.I.
10.1134/S1067413607030046
Publisher site
See Article on Publisher Site

Abstract

The diversity of bacteria metabolizing nitriles of carbonic acids was studied in soils of the Perm region affected by human activities. Effective methods for selective isolation of cultures possessing the nitrile hydratase and nitrilase activities were developed. Most microorganisms capable of utilizing nitriles were Grampositive Nocardia-like bacteria of the genus Rhodococcus. Isolates with a detectable nitrilase activity were also represented by Gram-negative forms (Gram-negative aerobic/microaerophilic bacilli and cocci of the genera Pseudomonas, Azomonas, Azotobacter, and Acidovorax). Two enzyme systems for nitrile hydrolysis were found in 27% of cultures. The nitrile hydratase and nitrilase activities of the studied strains exceeded these enzymatic activities in bacteria isolated from native soils, which indicates that natural selection of saprophytic microflora occurs in chemically altered soils.

Journal

Russian Journal of EcologySpringer Journals

Published: May 9, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off