Biological consequences of weak acidification caused by elevated carbon dioxide in freshwater ecosystems

Biological consequences of weak acidification caused by elevated carbon dioxide in freshwater... Weak acidification can occur in freshwater ecosystems when free carbon dioxide (CO2) levels increase, which can happen for a variety of reasons. To define the state of knowledge for how weak acidification influences freshwater biota and ecosystems, a review of the primary literature was conducted. Despite few empirical studies focused on weak acidification in the primary literature (~100 studies), some themes have emerged from our literature review. Most studies focused on physiological responses at the organismal level, and fish were the most studied taxa. Animals exhibited reduced individual growth rates, and, in contrast, primary producers demonstrated increased individual and population growth rates. In animals, mortality, sub-lethal injuries, and changes to behaviours were also observed. Negative consequences to reproduction in macrophytes were found. Few studies have focused on population, community, or ecosystem levels, though broad scale studies suggest that weak acidification can limit species community diversity, specifically in invertebrates and fish. Moving forward, researchers need to continue to advance our understanding of the consequences of weak acidification for freshwater biota. Furthermore, priority should be placed on research that can evaluate the potential for weak acidification in freshwater to lead to changes in ecological regimes or economical outcomes, such as fisheries collapses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Hydrobiologia Springer Journals

Biological consequences of weak acidification caused by elevated carbon dioxide in freshwater ecosystems

Loading next page...
 
/lp/springer_journal/biological-consequences-of-weak-acidification-caused-by-elevated-LoIG1IoW00
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Life Sciences; Freshwater & Marine Ecology; Ecology; Zoology
ISSN
0018-8158
eISSN
1573-5117
D.O.I.
10.1007/s10750-017-3332-y
Publisher site
See Article on Publisher Site

Abstract

Weak acidification can occur in freshwater ecosystems when free carbon dioxide (CO2) levels increase, which can happen for a variety of reasons. To define the state of knowledge for how weak acidification influences freshwater biota and ecosystems, a review of the primary literature was conducted. Despite few empirical studies focused on weak acidification in the primary literature (~100 studies), some themes have emerged from our literature review. Most studies focused on physiological responses at the organismal level, and fish were the most studied taxa. Animals exhibited reduced individual growth rates, and, in contrast, primary producers demonstrated increased individual and population growth rates. In animals, mortality, sub-lethal injuries, and changes to behaviours were also observed. Negative consequences to reproduction in macrophytes were found. Few studies have focused on population, community, or ecosystem levels, though broad scale studies suggest that weak acidification can limit species community diversity, specifically in invertebrates and fish. Moving forward, researchers need to continue to advance our understanding of the consequences of weak acidification for freshwater biota. Furthermore, priority should be placed on research that can evaluate the potential for weak acidification in freshwater to lead to changes in ecological regimes or economical outcomes, such as fisheries collapses.

Journal

HydrobiologiaSpringer Journals

Published: Aug 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off