Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Biogeochemistry of a River-Dominated Estuary Influenced by Drought and Storms

Biogeochemistry of a River-Dominated Estuary Influenced by Drought and Storms Increased frequency and severity of droughts, as well as growing human freshwater demands, in the Apalachicola-Chattahoochee-Flint River Basin are expected to lead to a long-term decrease in freshwater discharge to Apalachicola Bay (Florida). To date, no long-term studies have assessed how river discharge variability affects the Bay’s phytoplankton community. Here a 14-year time series was used to assess the influence of hydrologic variability on the biogeochemistry and phytoplankton biomass in Apalachicola Bay. Data were collected at 10 sites in the bay along the salinity gradient and include drought and storm periods. Riverine dissolved inorganic nitrogen and phosphate inputs were correlated to river discharge, but chlorophyll a (Chl a) was similar between periods of drought and average/above-average river discharge in most of the Bay. Results suggest that the potentially negative impact of decreased riverine nutrient input on Bay phytoplankton biomass is mitigated by the nutrient buffering capacity of the estuary. Additionally, increased light availability, longer residence time, and decreased grazing pressures may allow more Chl a biomass to accumulate during drought. In contrast to droughts, tropical cyclones and subsequent increases in river discharge increased flushing and reduced light penetration, leading to reduced Chl a in the Bay. Analysis of the time series revealed that Chl a concentrations in the Bay do not directly mirror the effect of riverine nutrient input, which is masked by multiple interacting mechanisms (i.e., nutrient loading and retention, grazing, flushing, light penetration) that need to be considered when projecting the response of Bay Chl a to changes in freshwater input. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Estuaries and Coasts Springer Journals

Biogeochemistry of a River-Dominated Estuary Influenced by Drought and Storms

Loading next page...
 
/lp/springer_journal/biogeochemistry-of-a-river-dominated-estuary-influenced-by-drought-and-B5RXW7K7eg

References (84)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Coastal and Estuarine Research Federation
Subject
Environment; Environment, general; Ecology; Freshwater & Marine Ecology; Environmental Management; Coastal Sciences; Water and Health
ISSN
1559-2723
eISSN
1559-2731
DOI
10.1007/s12237-018-0411-x
Publisher site
See Article on Publisher Site

Abstract

Increased frequency and severity of droughts, as well as growing human freshwater demands, in the Apalachicola-Chattahoochee-Flint River Basin are expected to lead to a long-term decrease in freshwater discharge to Apalachicola Bay (Florida). To date, no long-term studies have assessed how river discharge variability affects the Bay’s phytoplankton community. Here a 14-year time series was used to assess the influence of hydrologic variability on the biogeochemistry and phytoplankton biomass in Apalachicola Bay. Data were collected at 10 sites in the bay along the salinity gradient and include drought and storm periods. Riverine dissolved inorganic nitrogen and phosphate inputs were correlated to river discharge, but chlorophyll a (Chl a) was similar between periods of drought and average/above-average river discharge in most of the Bay. Results suggest that the potentially negative impact of decreased riverine nutrient input on Bay phytoplankton biomass is mitigated by the nutrient buffering capacity of the estuary. Additionally, increased light availability, longer residence time, and decreased grazing pressures may allow more Chl a biomass to accumulate during drought. In contrast to droughts, tropical cyclones and subsequent increases in river discharge increased flushing and reduced light penetration, leading to reduced Chl a in the Bay. Analysis of the time series revealed that Chl a concentrations in the Bay do not directly mirror the effect of riverine nutrient input, which is masked by multiple interacting mechanisms (i.e., nutrient loading and retention, grazing, flushing, light penetration) that need to be considered when projecting the response of Bay Chl a to changes in freshwater input.

Journal

Estuaries and CoastsSpringer Journals

Published: May 11, 2018

There are no references for this article.