Access the full text.
Sign up today, get DeepDyve free for 14 days.
Transesterification of crude cottonseed oil with methanol in the presence of catalyst (NaOH) in tubular microreactor has been investigated experimentally. The transesterification reaction was performed in a silicon tube of 0.8 mm inner diameter, mounted in serpentine manner configuration on an acrylic sheet. Influence of process variables such as reaction temperature $$(35{-}45\,{^{\circ }}\hbox {C})$$ ( 35 - 45 ∘ C ) , NaOH concentration (0.5–1.5 wt%) and oil/methanol molar ratio (1:7–1:9) on fatty acid methyl ester (FAME) was studied. In order to further improve biodiesel yield, an experimental design was employed using the Box–Behnken method and analysis of variance. The %FAME was calculated by gas chromatography using methyl arachidate as an internal standard. Fourier transform infrared spectroscopy was used to investigate the functional groups present in biodiesel. Thermal stability of biodiesel was evaluated using a thermogravimetric analyser. The optimal condition found was oil/methanol molar ratio (1:8), catalyst concentration (1 wt%) and reaction temperature $$(45\,{^{\circ }}\hbox {C})$$ ( 45 ∘ C ) while %FAME yield of about 94.1% at a residence time of 90 s.
Arabian Journal for Science and Engineering – Springer Journals
Published: Jun 1, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.