Biodegradation Behaviour of Thermoplastic Starch: The Roles of Carboxylic Acids on Cassava Starch

Biodegradation Behaviour of Thermoplastic Starch: The Roles of Carboxylic Acids on Cassava Starch The process of biodegradation upon modified thermoplastic starch with various types of carboxylic acids was performed via soil burial testing. As such, modification of thermoplastic starch via esterification with citric acid and ascorbic acid was made varied within the range of 1–4 by weight percentage (% w/w). As a result, after citric acid modification and ascorbic acid modification displayed higher moisture resistivity (15.04 and 20.46%) compared to thermoplastic starch, which resulted in 43.79% respectively. In addition, environmental degradation was determined by performing a biodegradation process by using compost soil. Besides, Fourier transform infrared spectroscopy and high performance liquid chromatography tests were carried out to assess the biodegradability attribute of the starch film. The findings showed that the both citric acid and ascorbic acid modifications exhibited lower rates of weight loss, consequently due to the action demonstrated by of carboxylic acids that inhibited the invasion of microbial after exposure to environmental degradation. Furthermore, the optical analysis revealed that both citric acid and ascorbic acid possessed capability to retard the invasion of microbial upon modifications observed from its rather limited formation of microbial colonies. Nevertheless, the carbonyl index portrayed lower growth rate for citric acid and ascorbic acid, in comparison to unmodified thermoplastic starch. Hence, the study concludes that the addition of carboxylic acid had reduced the rate of degradation for the thermoplastic starch, besides improving moisture resistivity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Polymers and the Environment Springer Journals

Biodegradation Behaviour of Thermoplastic Starch: The Roles of Carboxylic Acids on Cassava Starch

Loading next page...
 
/lp/springer_journal/biodegradation-behaviour-of-thermoplastic-starch-the-roles-of-JOVaxTGP74
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Chemistry; Polymer Sciences; Environmental Chemistry; Materials Science, general; Environmental Engineering/Biotechnology; Industrial Chemistry/Chemical Engineering
ISSN
1566-2543
eISSN
1572-8900
D.O.I.
10.1007/s10924-017-0978-5
Publisher site
See Article on Publisher Site

Abstract

The process of biodegradation upon modified thermoplastic starch with various types of carboxylic acids was performed via soil burial testing. As such, modification of thermoplastic starch via esterification with citric acid and ascorbic acid was made varied within the range of 1–4 by weight percentage (% w/w). As a result, after citric acid modification and ascorbic acid modification displayed higher moisture resistivity (15.04 and 20.46%) compared to thermoplastic starch, which resulted in 43.79% respectively. In addition, environmental degradation was determined by performing a biodegradation process by using compost soil. Besides, Fourier transform infrared spectroscopy and high performance liquid chromatography tests were carried out to assess the biodegradability attribute of the starch film. The findings showed that the both citric acid and ascorbic acid modifications exhibited lower rates of weight loss, consequently due to the action demonstrated by of carboxylic acids that inhibited the invasion of microbial after exposure to environmental degradation. Furthermore, the optical analysis revealed that both citric acid and ascorbic acid possessed capability to retard the invasion of microbial upon modifications observed from its rather limited formation of microbial colonies. Nevertheless, the carbonyl index portrayed lower growth rate for citric acid and ascorbic acid, in comparison to unmodified thermoplastic starch. Hence, the study concludes that the addition of carboxylic acid had reduced the rate of degradation for the thermoplastic starch, besides improving moisture resistivity.

Journal

Journal of Polymers and the EnvironmentSpringer Journals

Published: Mar 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off