Biocommunication between Plants and Pollinating Insects through Fluorescence of Pollen and Anthers

Biocommunication between Plants and Pollinating Insects through Fluorescence of Pollen and Anthers Flowering plants attract pollinators via various stimuli such as odor, color, and shape. Factors determining the foraging behavior of pollinators remain a major theme in ecological and evolutionary research, although the floral traits and cognitive ability of pollinators have been investigated for centuries. Here we show that the autofluorescence emitted from pollen and anthers under UV irradiation may act as another attractant for flower-visiting insects. We have identified fluorescent compounds from pollen and anthers of five plant species as hydroxycinnamoyl derivatives. The fluorescent compounds are also shown to quench UV energy and exhibit antioxidant activity, indicating a function as protectants of pollen genes from UV-induced damage. A two-choice assay using honeybees in the field demonstrated that they perceived the blue fluorescence emitted from the fluorescent compounds and were attracted to it. This result suggested that the fluorescence from pollen and anthers serves as a visual cue to attract pollinators under sunlight. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Chemical Ecology Springer Journals

Biocommunication between Plants and Pollinating Insects through Fluorescence of Pollen and Anthers

Loading next page...
 
/lp/springer_journal/biocommunication-between-plants-and-pollinating-insects-through-pXAp0hk0dX
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Life Sciences; Ecology; Biochemistry, general; Entomology; Biological Microscopy; Agriculture
ISSN
0098-0331
eISSN
1573-1561
D.O.I.
10.1007/s10886-018-0958-9
Publisher site
See Article on Publisher Site

Abstract

Flowering plants attract pollinators via various stimuli such as odor, color, and shape. Factors determining the foraging behavior of pollinators remain a major theme in ecological and evolutionary research, although the floral traits and cognitive ability of pollinators have been investigated for centuries. Here we show that the autofluorescence emitted from pollen and anthers under UV irradiation may act as another attractant for flower-visiting insects. We have identified fluorescent compounds from pollen and anthers of five plant species as hydroxycinnamoyl derivatives. The fluorescent compounds are also shown to quench UV energy and exhibit antioxidant activity, indicating a function as protectants of pollen genes from UV-induced damage. A two-choice assay using honeybees in the field demonstrated that they perceived the blue fluorescence emitted from the fluorescent compounds and were attracted to it. This result suggested that the fluorescence from pollen and anthers serves as a visual cue to attract pollinators under sunlight.

Journal

Journal of Chemical EcologySpringer Journals

Published: May 2, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off